mipi[®] DEVCON

Ken Foust

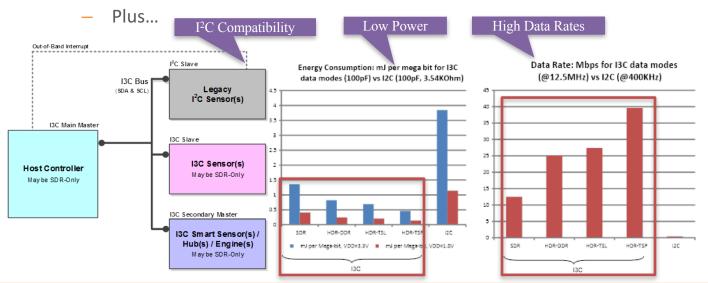
A Developer's Guide to MIPI I3CSM for Sensors and Beyond

2017 MIPI ALLIANCE DEVELOPERS CONFERENCE

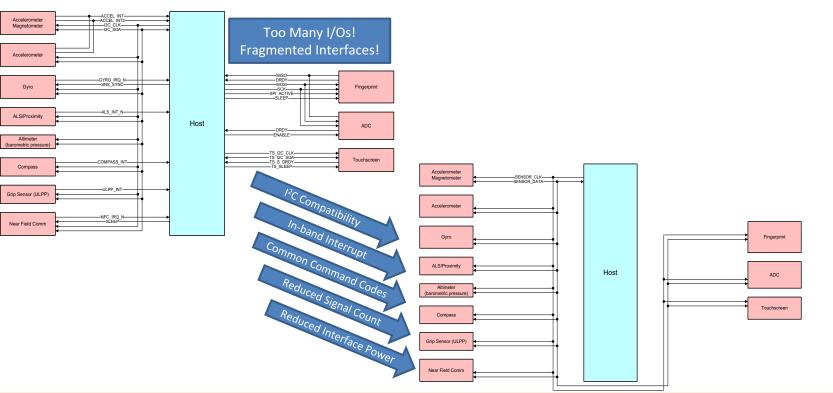
Outline

- Introduction to MIPI I3CSM
- Usages beyond sensing
 - MIPI Camera Control Interface (CCISM)
 - MIPI Touch over I3CSM
 - MIPI Debug for I3CSM
- MIPI I3CSM feature descriptions
- Implementation guidelines
 - Legacy Device Support
 - HDR Modes
 - Varied Topologies
- Summarized good design practices

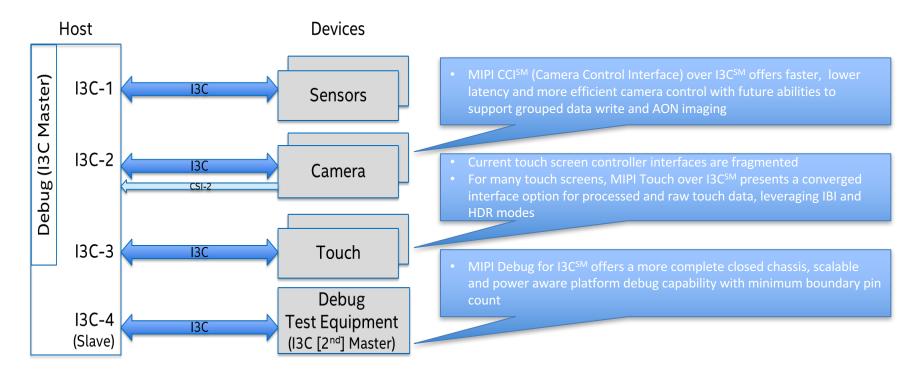
MIPI I3CSM for Ubiquitous Low Speed Interfacing


- Anywhere sensors are used, MIPI I3CSM belongs
- Aimed toward historical I²C, SPI and UART applications in...

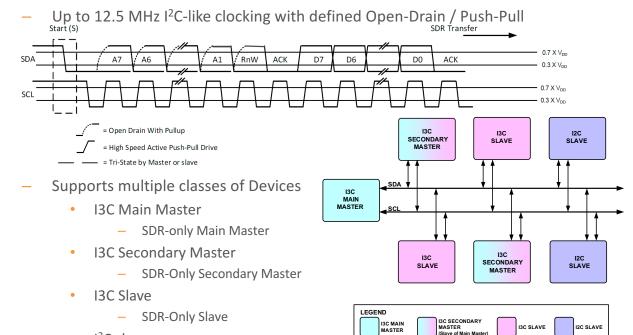
What is MIPI I3CSM?


- Innovative new 2-Wire Sensor interface
- Key features address historical pain points
 - In-band Interrupt, Dynamic Addressing, Multi-Master, Standardized Commands, Time Control, Hot-Join, Error Detection and Recovery

BANGALORE, INDIA | 2017



MIPI I3CSM Vision?

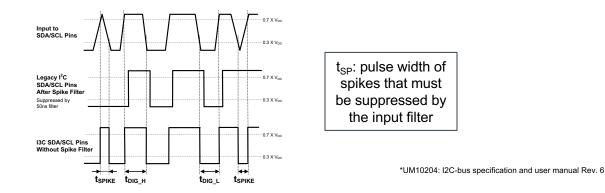


Usages Beyond Sensing

• I3C SDR – The Base Interface

I²C slave

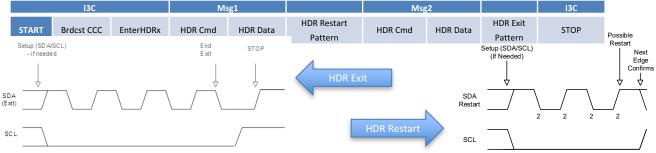
- SDR Dynamic Address Assignment
 - Standardized procedure for dynamic assignment of 7-bit Addresses to all I3C Devices
 - I3C Slaves have two standardized characteristics registers and an internal 48bit Provisional ID to aide the procedure
 - Legacy I²C Devices still use their static I²C Address
- SDR In-band Interrupt
 - Slave device can issue START Request when in "Bus Available" state
 - Master provides Interface Clock for Slave to drive it's Master-assigned address onto the bus
 - Lowest assigned address wins arbitration in Open-Drain configuration
 - A data payload (i.e. Mandatory Data Byte) can immediately accompany the In-band Interrupt


- Error Detection and Recovery Methodology
 - For Master and Slave generated errors (9 Error Types identified, Parity, CRC5)
- Common Command Codes
 - Standardized command mode with extensible set of MIPI-defined codes that can be Broadcasted and/or Directed, Read and/or Write

S or Sr	0x7E /	' W / АСК	Command Code / T	Data (Optional) (Broadcast CCC only) / T	Sr or P			
 Standardized Command Codes Event Enable/Disable Activity States Payload Mgmt 								
	 I3C Feature Mgmt (Dynamic Address Assignment, Mastership, HDR Modes, Timing Control) Test Modes 							
	Extensible Space (MIPI and Vendor)							

Guidelines - Legacy I²C Device Support

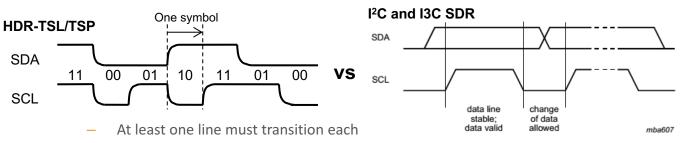
- Fm and Fm+ Speeds Supported
- 50ns Spike Filter (t_{SP}) Needed for 12.5MHz I3CSM Clocking


- Clock Stretching is Not Allowed I3C SCL is Push/Pull
- 20mA Open Drain Drivers (I_{OI}) are Not Used
- I²C Extended Addresses (10 bit) are Not Used

• I3C High Data Rate (HDR) Modes

- Optionally supported beyond the base SDR mode: 12.5MHz, SDA/SCL
 - HDR-DDR: Double Data Rate
 - HDR-TSL/TSP: Ternary Symbol
- Offer bit rates over 33Mbps at a fraction of the per bit power of I²C Fast Mode
- Simple Slave-side digital implementations
- Coexistent with legacy I²C Devices
- Leverage rising and falling edges
- Individually entered using broadcasted MIPI-defined Common Command Codes
- Universally exited and restarted via MIPI-defined toggling patterns

• HDR-DDR: Double Data Rate


- Uses SCL as a clock, however Data and Commands change SDA on both SCL edges. By contrast, SDR Mode changes SDA only when SCL is Low
- HDR-DDR moves data by Words, which generally contains 2 preamble bits, 2 payload bytes and 2 parity bits. 4 Word Types defined: Command, Data, CRC, and Reserved

SDA P1 P0 007 006 005 004 003 002 001 000 017 016 015 014 013 012 011 010 P1 P0	
Preamble Bits Command, Data, or CRC Parity Bits Define the subsequent Word Types Based on Preamble (2-bit MSB) P1: Odd Parity bit P0: Even Parity bit	
— Simple protocol:	
HDR-DDR HDR Data Command (1 or more words) HDR DDR HDR Exit P HDR → ♦ <sdr></sdr>	
From Master to Slave ACK = Acknowledge (SDA Low) NACK = Not Acknowledge (NACK) From Slave to Master S = START Condition Transition Bit P = STORT Condition (Parity Bit for CCC) T = Transition Bit Alternative to ACKINACK	

• HDR-TSL/TSP: Ternary Symbol Coding

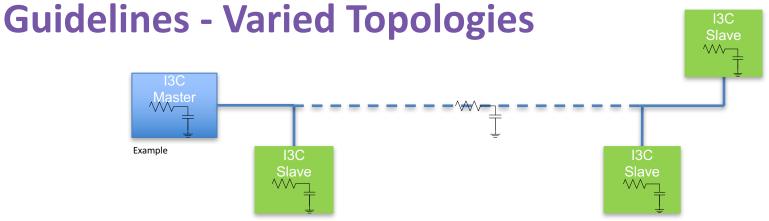
- Ternary symbol coding for pure (TSP) and I²C legacy-inclusive (TSL) systems
- Given a two-wire interface with 'simultaneous' transitions and no traditional clock, there are 3 possible symbols available – 0, 1, 2

- Ideally, there are 3 possible "next" transition
- Transition indices are used to efficiently encode Binary into Ternary
- Simple protocol:

I3C SDR			Msg1			Msg2			I3C
START	Brdcst CCC	EnterHDRx	HDR Cmd	HDR Data	HDR Restart Pattern	HDR Cmd	HDR Data	HDR Exit Pattern	STOP

Guidelines - HDR Modes

Enter HDR Commands Supported


	I3C		Msg1			Msg2			I3C	
S	TART	Brdcst CCC	EnterHDRx	HDR Cmd	HDR Data	HDR Restart Pattern	HDR Cmd	HDR Data	HDR Exit Pattern	STOP

HDR Exit Pattern detected by all I3C Devices

 Non-HDR Devices shall ignore I3C HDR bus traffic until the HDR Exit Pattern is detected

- Impacts on signal transition/transit times (maximum bus frequency)
 - SDA/SCL drive strength: "weaker" for lower power and interference vs "stronger" for faster over larger topologies/loads
 - Trace length and material: short vs long and pcb vs cable
 - SCL/SDA pad capacitance
 - Clock to Data Turnaround Time (t_{sco})
- Legacy I²C Devices impact maximum bus frequency (MHz)
 - Must run I3C at speeds/pulses beyond Spike Filter or slow Bus to that of slowest I²C Device
- Impacts on signal integrity/reliability
 - Device Location: close and far Devices can cause interference from reflections

Summarized Good Design Practices

- Thoroughly understand capability of coexistent Legacy I²C Devices
 - 50ns Spike Filter
 - Disabled Clock Stretch
- Understand bus topology and performance tradeoffs Mixed (I3C and Legacy I²C Devices) vs Pure Bus (I3C Devices Only)
 - Trace length and material
 - SDA/SCL pad capacitance
 - Clock to Data Turnaround Time (t_{sco})
 - Device location

Any Questions?

mipi DEVCON THANK YOU

BANGALORE, INDIA

2017 MIPI ALLIANCE DEVELOPERS CONFERENCE