mipi[®] DEVCON

Yafit Snir Arindam Guha

Cadence Design Systems, Inc.

Accelerating System level Verification of SOC Designs with MIPI Interfaces

HSINCHU CITY, TAIWAN MIPI.ORG/DEVCON 2017 MIPI ALLIANCE DEVELOPERS CONFERENCE

- Overview: MIPI Verification approaches and challenges
- Acceleration methodology overview and advantages
- Accelerated verification IP Architecture
- Migration guidelines: from simulation to acceleration
- Virtual emulation using MIPI virtual device models
- Demonstration

- Overview: MIPI Verification approaches and challenges
- Acceleration methodology overview and advantages
- Accelerated verification IP Architecture
- Migration guidelines: from simulation to acceleration
- Virtual emulation using MIPI virtual device models
- Demonstration

MIPI CSI-2sm & MIPI DSIsm

- Widely adopted serial *high-speed protocols*.
- Implemented in complex systems, for a variety of applications in different markets:
 - Mobile
 - Automotive
 - Multimedia
 - Virtual reality, augmented reality and others

MIPI Interfaces usage example in Complex/Large SOC's

System Level Verification Challenges

- Complex and Large Designs.
 - Long simulation time
 - Need to reach system coverage goals prior to RTL freeze.
- Time to market: Requires parallel development of hardware and software design, early in development cycle..
- Validating software and hardware integration.
- Create and validate real world scenarios in a pre-silicon environment.

Overview of Current verification approaches

- Pure Simulation verification
 - Full controllability and coverage collection.
 - Acceptable performance for module/sub system.
- Hardware assisted verification
 - Enables High performance for sub system/system verification.
 - Enables pre-silicon HW/SW verification.
 - Enables running longer tests, with high throughput to reach interesting system scenarios, and validate performance.

Overview of hardware assisted verification methods

- Simulation Acceleration
 - Accelerating hardware verification.
- Virtual Emulation
 - SW Driven HW Verification, SW/HW Validation
- In-Circuit Emulation
 - Enables real device connection
- FPGA Prototyping

Emulator Use Modes

- Overview: MIPI Verification approaches and challenges
- Acceleration methodology overview and advantages
- Accelerated verification IP Architecture
- Migration guidelines: from simulation to acceleration
- Virtual emulation using MIPI virtual device models
- Demonstration

Acceleration

Signal Based Acceleration & Transaction Based Acceleration

Accelerated Verification IP (AVIP)

Acceleration Methodology Advantages

- Enables orders-of-magnitude gains in throughput over Simulation
- Enables re using selected parts of your simulation verification environment
- Enables advanced technologies with virtual emulation, like:
 - Hybrid operation for optimal partition of the design between HW and SW to achieve maximum speedup
 - Connection to Virtual Devices, Virtual machines, etc.
- Enables OS-level benchmarks and driver bring-up

- Overview: MIPI Verification approaches and challenges
- Acceleration methodology overview and advantages
- Accelerated verification IP Architecture
- Migration guidelines: from simulation to acceleration
- Virtual emulation using MIPI virtual device models
- Demonstration

Architecture of Accelerated Verification IP (AVIP)

- Overview: MIPI Verification approaches and challenges
- Acceleration methodology overview and advantages
- Accelerated verification IP Architecture
- Migration guidelines: from simulation to acceleration
- Virtual emulation using MIPI virtual device models
- Demonstration

Optimizing Acceleration performance

Color Legend % of time spent in testbench % of time spent in DUT % of time spent in channel

her acceleration performance		Transaction Based Acceleration With optimized testbench	 High level of acceleration Focus on sub-system & system level verification
		Testbench optimization	 Optimize testbench by removing verification redundancies from IP-level - stimulus generation.
		Transaction Based Acceleration	 Increase acceleration factor
	ТВ	With optimized channel	Reduce communication overheadTransactor may need modeling effort
		Signal Based Acceleration	 Quickest path to acceleration
	ТВ	With DUT running in HW Introduces channel overhead	 Maximize re-use of testbench
	ТВ	Simulation	 Profile simulation runs to identify acceleration candidates
Hig			Select runs that are long & spend large
_		Cadence Design Systems	amount of time in DUT

Acceleration Friendly UVC (at the Simulation Stage)

Cadence Design Systems

Acceleration Ready – UVC (at the Emulation Stage)

Cadence Design Systems

- Overview: MIPI Verification approaches and challenges
- Acceleration methodology overview and advantages
- Accelerated verification IP Architecture
- Migration guidelines: from simulation to acceleration
- Virtual emulation using MIPI virtual device models
- Demonstration

DSI Virtual Device

Cadence Design Systems

CSI-2 Virtual Device

Cadence Design Systems

Virtual Device Models usage example

Cadence Design Systems

- Overview: MIPI Verification approaches and challenges
- Acceleration methodology overview and advantages
- Accelerated verification IP Architecture
- Migration guidelines: from simulation to acceleration
- Virtual emulation using MIPI virtual device models
- Demonstration

To discuss Cadence MIPI Accelerated VIPs availability, Please contact: <u>HSV_PM@cadence.com</u>

Cadence Design Systems

mipi DEVCON THANK YOU

HSINCHU CITY, TAIWAN MIPI.ORG/DEVCON 2017 MIPI ALLIANCE DEVELOPERS CONFERENCE