mipi[®] DEVCON

Steve (CY) Wang Principal Solution Engineer Cadence Design Systems Cadence Design Systems

MIPI I3C[™] High Data Rate modes – How to speed up design verification?

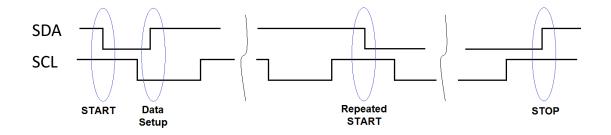
2017 MIPI ALLIANCE DEVELOPERS CONFERENCE

HSINCHU CITY, TAIWAN MIPI.ORG/DEVCON

Introduction

The MIPI Alliance MIPI I3C[™] standardized sensor interface provides a number of significant advantages over existing digital sensor interfaces.

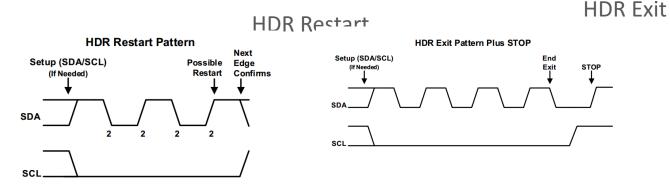
This paper will briefly present MIPI I3C[™] interface basics and will focus on various verification aspects of MIPI I3C[™] High Data Rate modes through an advanced verification methodology based on coverage driven verification and real-life scenarios


Single Data Rate Mode

- Single Data Rate (SDR) Mode is the default mode used by MIPI I3CsM
- MIPI I3C[™] Bus always initializes in SDR Mode
- Maximum data rate 12.5 Mbps
- SDR is almost similar to I²C, but introduces many new features not present in I²C
- SCL wire operates as a clock signal, while the data is transferred using SDA wire

SDR Basics

- − START Condition: SCL = High, SDA = High → Low
- − STOP Condition: SCL = High, SDA = Low → High
- Transmitter writes data bit to SDA on falling edge of SCL
- Receiver(s) read data bit on rising edge of SCL

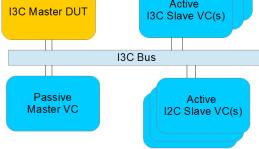


High Data Rate Modes

- MIPI I3C[™] High Data Rate modes allow to transfer more data while preserving SDR Frequency
- There are three MIPI I3Csm HDR modes:
 - HDR-DDR Double Data Rate mode
 - HDR-TSP Ternary Symbol Pure-bus mode
 - HDR-TSL Ternary Symbol Legacy-inclusive-bus mode
- MIPI I3C[™] HDR modes can be used only on:
 - Pure I3C bus no I^2C devices present on the bus
 - Mixed Fast Bus I²C devices equipped with 50ns Spike Filter
- MIPI I3C[™] Bus cannot be initialized in any of HDR modes
- While in HDR mode, Repeated START and STOP are "replaced" with HDR Restart and HDR Exit patterns

HDR Restart and HDR Exit Patterns

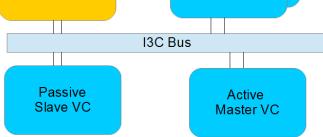
• Separates HDR transactions


- Must be detected by all I3C devices, including SDR-only devices
- Serves as "recovery point" in case of any error detected while in HDR mode Separates HDR transactions
 - Serves as "recovery point" in case of HDR error detection as well as SO and S1 error detection

HSINCHU CITY, TAIWAN | 2017

Verification Environment – Master DUT

Passive Master verification component (VC) monitors outgoing traffic generated by I3C Master DUT, issues alerts about detected errors and collects coverage



Active I3C/I²C Slave verification components emulate I3C/I²C devices present on the bus. These components should be able to emulate both proper and erroneous behavior, in order to test the ability of DUT to recover from errors in accordance with I3C spec requirements

Verification Environment – Slave DUT

ARaissive MSlave/erificationponent emulates I3C Master device. This component should be able to roomagenten bumonitodisticouitgoingld be able to emulate erroneous behavior Active order to test the DUT's error rtraffiergehërated by DUT, issues alerts about detected errors and collects coverage

Active I3C Slave verification components emulate additional slave devices present on the bus, mostly for testing of arbitrationrelated aspects

I3C HDR-DDR – Main Features

- I3C Dual Data Rate (HDR-DDR) mode allows to increase data rate up to 25 Mbps by reading data bits on both edges of SCL clock signal.
- The I3C Bus enters HDR-DDR mode upon transmission of ENTHDR0 Common Command Code and exits it when HDR Exit pattern is observed
- Data is transferred in messages that consist of Command Word, one or more Data Words and CRC Word
- Allows 128 Write commands and 64 Read commands

MIPI I3C[™] HDR-DDR Transmission

<u>File Edit V</u> iew Explore For <u>m</u> at Simulation <u>U</u> VM <u>W</u> indows <u>H</u> elp
Search Names: Signal 🗸 🗾 🔥 🎢 📋 🔄 🖉 Send To: 🕵 🚝 🔩 🎥 🌉 📰 📰 📰 🔤 🔤 🔤 🔤 🖉 🏠 🏠 🎆
□ - □ 〒 □ □ □ 120,422,400ps + 49 Search Times: Value - □ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TimeA▼ = 55,783,815 ▼ ps▼ PX*
Baseline v=0 If Dursor-Baseline v= 55,783,815ps Mame ov Cursor ov 56,600,000ps Image: Sold ov Image: Sold ov </td
HDR Restart Pattern SDA Data Setup

HSINCHU CITY, TAIWAN | 2017

HDR-DDR Read Message

MIPI I3C[™] HDR-DDR – Main Verification Points

- 1. "Invisibility" of HDR-DDR traffic to I²C devices present on the bus
- 2. Correct encoding and decoding of data
- 3. Termination of Read operation by Master
- 4. Error detection and recovery
- 5. For designs not supporting HDR-DDR proper ignoring of all HDR-DDR traffic

Verification Scenarios for HDR-DDR

Slave DUT

- 1. General Write-Read verifies proper operation of Slave DUT in HDR-DDR mode
- 2. Read Terminated by Master verifies DUT ability to recognize and accept read termination by I3C Master
- **3.** Write with invalid preamble Active Master VC generates invalid Preamble in different kinds of DDR Words written to Slave DUT, in order to test DUT ability to detect, ignore and recover from erroneous transmission
- 4. Write with invalid parity Active Master VC generates invalid parity bits in different kinds of DDR Words written to Slave DUT, in order to test DUT ability to detect, ignore and recover from erroneous transmission
- 5. Write with invalid CRC5 Active Master VC generates invalid CRC5 Word in DDR Write Message, in order to test DUT ability to detect, ignore and recover from erroneous transmission

Verification Scenarios for HDR-DDR

Master DUT

- 1. General Write-Read verifies proper operation of Master DUT in HDR-DDR mode
- 2. Read Terminated by Master verifies DUT ability to terminate read transaction
- 3. Read with invalid preamble Active Slave VC generates invalid DDR Word Preamble in order to test DUT ability to detect and recover from preamble error. Invalid preamble should be generated in all types of DDR Words, e.g. Data Word and CRC Word
- 4. Read with invalid parity Active Slave VC generates invalid parity bits in Data Word in order to test DUT ability to detect and recover from parity error. Invalid parity should be injected at both parity bit positions
- 5. Read with invalid CRC5 Active Slave VC generates invalid CRC5 Word in order to test DUT ability to detect and recover from CRC5 error

Questions?

© 2017 MIPI Alliance, Inc.

HSINCHU CITY, TAIWAN | 2017

mipi DEVCON THANK YOU

HSINCHU CITY, TAIWAN MIPI.ORG/DEVCON 2017 MIPI ALLIANCE DEVELOPERS CONFERENCE