# mipi<sup>®</sup> DEVCON

Hezi Saar, Sr. Staff Product Marketing Manager <sub>Synopsys</sub>

Powering Imaging Applications with MIPI CSI-2<sup>™</sup>

2017 MIPI ALLIANCE DEVELOPERS CONFERENCE

#### HSINCHU CITY, TAIWAN MIPI.ORG/DEVCON



### Agenda

- Implementation of MIPI interfaces in mobile applications and beyond
- Advantages of implementing MIPI camera and sensor specifications
- Meeting reliability requirements of automotive applications
- Summary

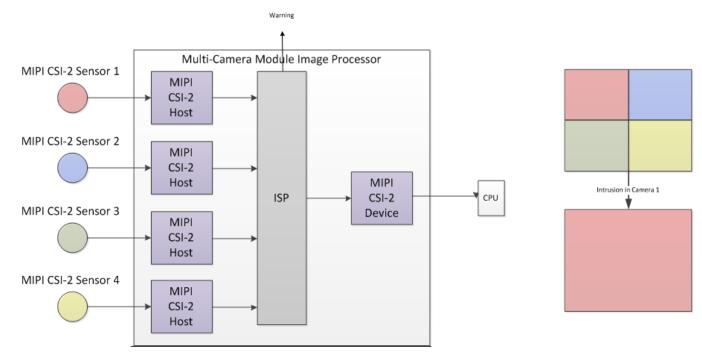


### **MIPI Specifications in New Applications**



**Synopsys** 




### **Industrial, Surveillance Applications**



Synopsys



### **Example: Multi-Image Sensor Surveillance**



**Synopsys** 



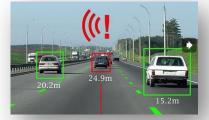
# **Advanced Driver Assistance Systems (ADAS)**

- Passive ADAS
  - Back-up, side mirror, surround

view camera



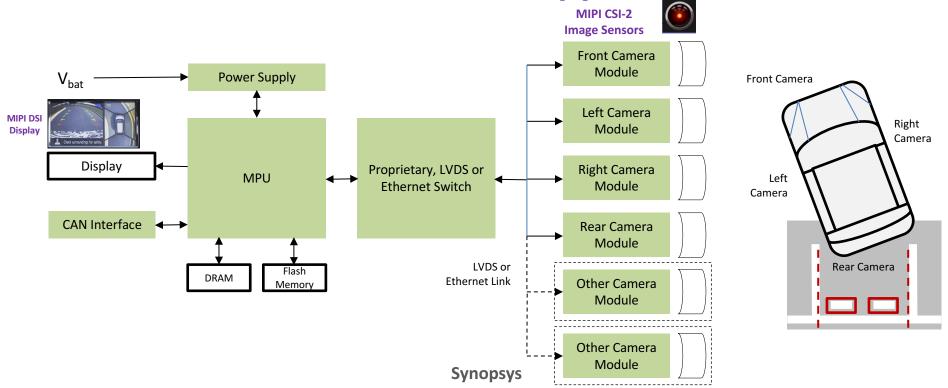
- Deck surroundings for safely
- Distance alert system




- Active ADAS
  - Back-up camera with ID &

braking



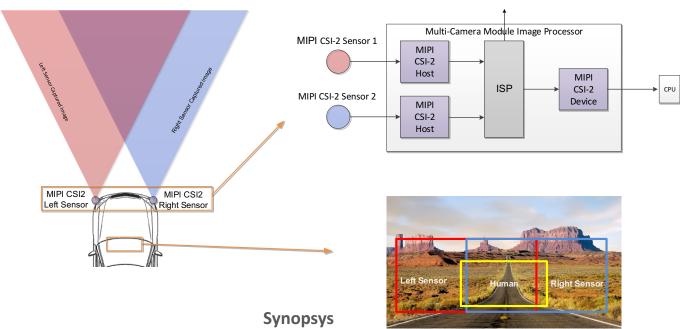

Collision avoidance



**Synopsys** 



#### **Surround View Automotive Applications**






Warning

### **Surround View Automotive Applications**

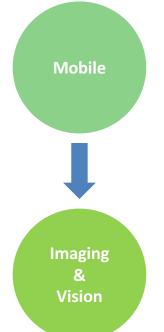
#### Pedestrian/Obstacle Detection





# **MIPI CSI-2 Specification**

Synopsys


© 2017 MIPI Alliance, Inc.



### MIPI CSI-2 Specification – Standardizing Image Sensor Interface in Mobile and Beyond

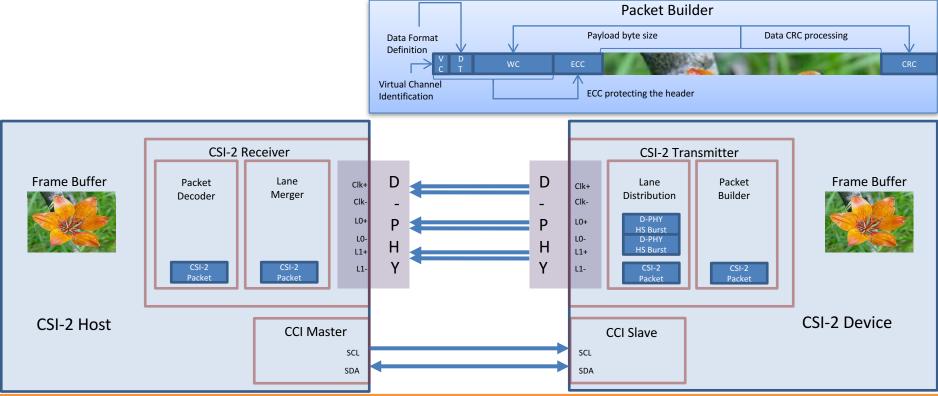
- MIPI's first problem statement back in 2004!
  - No standard image sensor interface for Mobile
  - Interoperability challenges
  - Camera vendors had to pick and choose which devices/SoCs they developed for
  - Devices/SoCs had to pick and choose partners on the camera sensor side
  - Very difficult from a scalability point of view







### **MIPI CSI-2 Specification**


| CSI-2 Specification version                                                           |                             | <u>1.00</u><br>2005 | <u>1.01</u><br>2011 | <u>1.1</u><br>2013 | <u>1.2</u><br>2014 | <u>1.3</u><br>2014 | <u>2.0</u><br>2017                  |
|---------------------------------------------------------------------------------------|-----------------------------|---------------------|---------------------|--------------------|--------------------|--------------------|-------------------------------------|
| RAW 6/7/8/10/12/14<br>RGB 444/555/565/666/888<br>YUV 420 8/10-bit<br>YUV 422 8/10-bit |                             | Yes                 | Yes                 | Yes                | Yes                | Yes                | Added RAW16/20                      |
| Compression for RAW Data Types (Annex E)                                              |                             | -                   | Yes                 | Yes                | Yes                | Yes                | Added 12-10-12                      |
|                                                                                       | Specification Version       | 0.58                | 1.00                | 1.1                | 1.2                | 1.2                | 2.1                                 |
| МІРІ D-РНҮ                                                                            | Speed (Gbps)                | 1.0                 | 1.0                 | 1.5                | 2.5                | 2.5                | 4.5 – Normal Ch.<br>6.5 – Short Ch. |
|                                                                                       | Number of lanes (Typically) | 1 to 4              | 1 to 4              | 1 to 4             | 1 to 8             | 1 to 8             | 1 to 8                              |
|                                                                                       | PPI Interface               | 8-bit               | 8-bit               | 8-bit              | 8-bit              | 8-bit              | 8/16/32-bit                         |
|                                                                                       | Specification Version       | -                   | -                   | -                  | -                  | 1.0                | 1.2                                 |
| МІРІ С-РНҮ                                                                            | Speed (Gsym/s)              | -                   | -                   | -                  | -                  | 2.5                | 3.5                                 |
| MIPI C-PHT                                                                            | Number of lanes (Typically) | -                   | -                   | -                  | -                  | 1 to 6             | 1 to 6                              |
|                                                                                       | PPI Interface               | -                   | -                   | -                  | -                  | 16-bit             | 16/32-bit                           |
| CCI : I2C Modes                                                                       |                             | I2C – FM (400kHz)   | 12C - FM            | 12C - FM           | 12C - FM           | 12C - FM           | I2C - FM                            |
| Data Scrambling (Per-Lane)                                                            |                             | -                   | -                   | -                  | -                  | -                  | Yes                                 |
| Extended Virtual Channels                                                             |                             | -                   | -                   | -                  | -                  | -                  | Yes                                 |
| Latency Reduction and Transport Efficiency (LRTE):                                    |                             | -                   | -                   | -                  | -                  | -                  | Yes                                 |

Mobile Imaging & Vision

© 2017 MIPI Alliance, Inc.



### **MIPI CSI-2 Over MIPI D-PHY**





- RAW-16 and RAW-20 color depth
- Latency Reduction & Transport Efficiency (LRTE)
- Differential Pulse Code Modulation (DPCM) 12-10-12 compression
- Scrambling to reduce Power Spectral Density (PSD) emissions



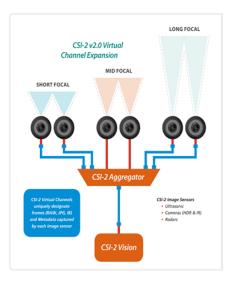
• Expanded number of virtual channels from 4 to 32

#### Image Quality/HDR - Latency - Reliability - Aggregation

Synopsys



- CSI-2 1v3 color depths are sufficient for Mobile. Visually, there is almost no change between RAW14 and RAW16/20.
- RAW-16 and RAW-20 color depth bring advanced vision capabilities to Automotive and Industrial applications
  - Improves image capture when the environment changes suddenly and dramatically, for example in a big change in lighting condition.



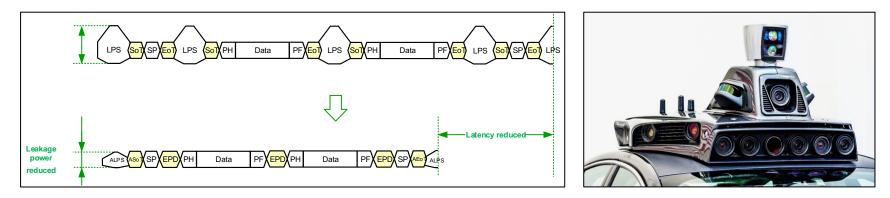



Synopsys



- To accommodate the larger number of image sensors and their multiple data types
- To support multi-exposure and multi-range sensor fusion for ADAS



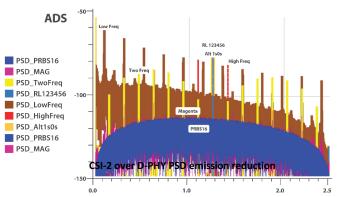

| Virtual Channel 0 – Line 0 |  |
|----------------------------|--|
| Virtual Channel 0 – Line 1 |  |
| Virtual Channel 0 – Line 2 |  |
| Virtual Channel 0 – Line 3 |  |
| Virtual Channel 0 – Line 4 |  |
|                            |  |
| Virtual Channel 0 – Line N |  |
| Virtual Channel 1 – Line 0 |  |
| Virtual Channel 1 – Line 1 |  |
| Virtual Channel 1 – Line 2 |  |
| Virtual Channel 1 – Line 3 |  |
| Virtual Channel 1 – Line 4 |  |
|                            |  |
| Virtual Channel 1 – Line M |  |

Synopsys



Added Latency Reduction and Transport Efficiency (LRTE)

- LRTE reduces frame transport latency & leakage power due to frequent "high speed low power" transitions.
- This will enhance image sensor aggregation and multi exposure for real-time perception and decision making applications




Synopsys

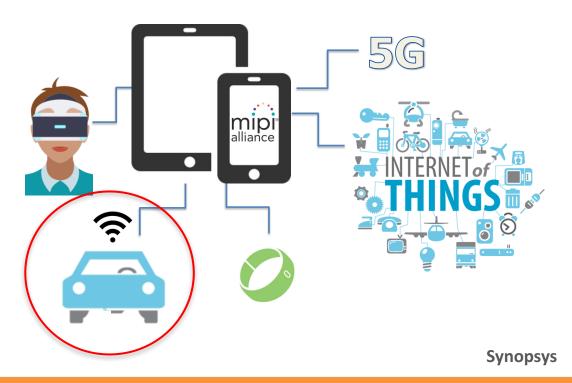


Added scrambling and compression scheme

- Galois Field Scrambling reduces power spectral density (PSD) emissions
  - Minimizes PSD emissions from aggressor components, which are particularly beneficial when placed near sensitive receivers
- New DPCM 12-10-12 compression to further boost image quality
  - Superior SNR using reduced bandwidth PHY
  - Removes more compression artifacts when comparin with previous CSI-2 1v3 compression mode

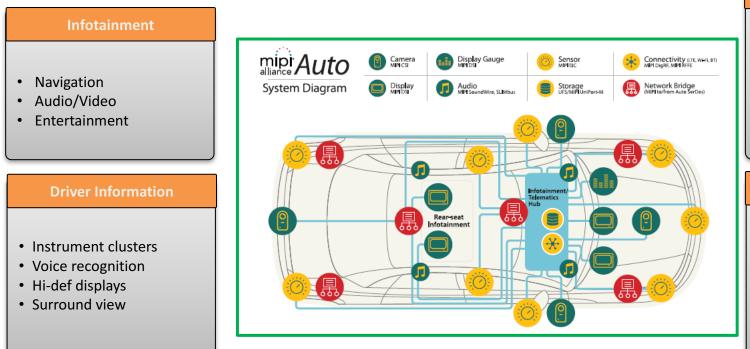





Synopsys

DPCM 12-8-12 vs DPCM 12-10-12




### **MIPI Specifications Beyond Mobile**

 Tackling the evolving imaging and vision applications in the automotive platform



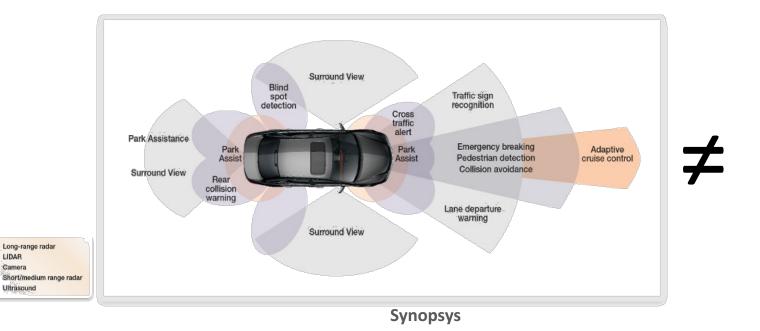


### **MIPI Specs for Multimedia, Storage, Sensor & Wireless Connectivity in Automotive Applications**



#### Vehicle Networks & V2X

- Real time video & data network
- Gateways
- Telematics
- V2V
- V2I
- Security


#### **Driver Assistance**

- Parking assist
- Lane departure warning & Lane keep aid
- Pedestrian detection & correction
- Automatic emergency braking

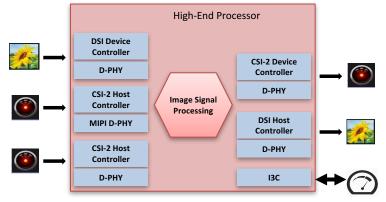


### **Safety-Critical ADAS Applications**

#### Requiring ISO 26262 certification for target ASILs






### **Key Requirements of Automotive-Grade IP**

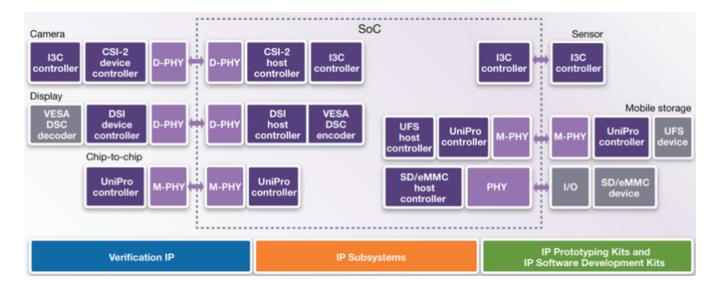




#### DesignWare ASIL Ready ISO 26262 Certified CSI-2 IP

- Complete camera, display and sensor interface IP solutions from a single vendor
- MIPI CSI-2, MIPIJ D-PHY and MIPI I3C<sup>™</sup> protocols
  - Automotive grade1 and grade2 D-PHYs
- Enables new set of applications in automotive, AR/VR, IoT markets
  - Lowers integration risk for application processors, bridge ICs and multimedia co-processors
- Future proof IP supporting variety of speeds, proven in silicon
  - Reduces cost and power for multiple instantiations
  - Testability features enable low cost manufacturing






Industry's first MIPI I3C Demo

Synopsys



### Synopsys® DesignWare® MIPI IP Portfolio



**Synopsys** 

# mipi DEVCON THANK YOU

HSINCHU CITY, TAIWAN MIPI.ORG/DEVCON 2017 MIPI ALLIANCE DEVELOPERS CONFERENCE