MIPI RFFE v2.0 Webinar:
An Overview of New Features and Implementation Benefits

Jim Ross, Skyworks Solutions - Chair RFFE WG
John Oakley, Intel – Vice-chair RFFE WG

February 17, 2015
About MIPI Alliance

- 264 Members (as of Jan. 23, 2015)
- 45+ specifications and supporting docs
- We drive **mobile** and **mobile-influenced interface** technology through the development of hardware and software specifications
- We work **globally** and **collaboratively** with other standards bodies to benefit the mobile ecosystem
Active MIPI Alliance Working Groups

- Analog Control Interface
- Battery Interface
- Camera
- Debug
- Display High Speed Synchronous Interface
- Low Latency Interface
- Low Speed Multipoint Link (New - SoundWireSM)
- Marketing
- PHY (C / D / M)
- Reduced Input Output (RIO) (New)
- RF Front-End (RFFESM)
- Sensor / I3CSM (New)
- Software (New)
- Technical Steering Group
- Test
- UniProSM
Recent Announcements

• 05 Nov 2014 - MIPI Alliance Introduces Sensor Interface Specification for Mobile, Mobile-Influenced and Embedded-Systems Applications

• 09 Oct 2014 - MIPI Alliance Introduces MIPI SoundWire℠, a Comprehensive Audio Interface for Mobile and Mobile-Influenced Devices
The Future of MIPI – Beyond Mobile

- Mobile influences **everything**

- Everything gets faster, smaller and lower power
 - MIPI will continue to evolve specs to take advantage of the evolution of technology in mobile devices
MIPI RFFE v2.0 Webinar:
An Overview of New Features and Implementation Benefits

Jim Ross, Skyworks Solutions - Chair
RFFE WG

John Oakley, Intel – Vice-chair RFFE WG

February 17, 2015
MIPI RFFE Overview Agenda

• MIPI RFFE v1.x (v1.00.00 & v1.10)
 – What is RFFE?
 – Key Features

• Why RFFE v2.0?
 – Key New Features
 • Multiple devices can control the bus (Multi-Master)
 • Additional bus operating frequencies (Extended Frequencies)
 • Additional read-back methods (Synchronous Read)
 • Support for interrupts (Interrupt-Capable Slave functionality)
 • Additional Registers for unified control (New Reserved Registers and functions)

• MIPI RFFE Roadmap v2.1?
 – Items up for consideration?
MIPI RFFE v1.x
What is RFFE?

RFFE Introduction

- RFFE WG is the RF Front-End Control Working Group within the MIPI Alliance
 - MIPI System Diagram
- RFFE WG has specified a two-wire control bus to be used (but not limited to) in controlling various RF Front-End devices (e.g. PAs, Filters, Switches, Antennas etc.)
- Work started Sep 2008 and was developed on an accelerated schedule.
RFFE in the RF Front-End

The RF is essential in conveying the communication over radio waves

- The RF performance and functionality increases the devices versatility by
 - better coverage
 - higher throughput
 - better call connectivity
 - providing international roaming
 - dual or multi SIM configurations
 - providing improved battery life

- Complex RF solutions incorporate a multitude of customized components in the RF Front-End
- Standardized solutions required for control
- RFFE is broadly adopted by the industry being the excellent solution for controlling the RF Front-End
RFFE Technical Overview

Two signals (+ VIO):
- Master initiated SCLK
- Bi-directional SDATA

- RFFE key pillars for the design are to:
 - Minimize wiring effort in front ends of mobile terminals
 - Minimize pin count
 - Many Frontend devices are pin limited
 - Great savings in pin count at the RFIC.
 - Ease and optimize control flow
RFFE v1.x Overview

• Electrical & Digital Details
 – Up to a 26 MHz bus speed.
 – Supports up to an address space of 16 bits.
 – Contains parity bits for error checking
 – Common voltage reference defined for the interface.

• Flexible Bus Configuration
 – One master system, which eliminates arbitration for the bus.
 – Slave devices are very configurable.
 – Slaves support an optional programmable Unique Slave ID.
 – Supports user defined group IDs for write commands.

• Multiple Message types
 – Single byte and multi-byte read and write commands are supported
 – Supports broadcast messages over the bus to multiple slave devices.
 – An optional trigger feature to solve potential timing issues.
 – Supports a command initiated soft reset.

1.8 or 1.2 VIO Support
Many Message Types
1 Master
Triggered Messaging
Bidirectional Serial Link
Programmable IDs
RFFE v1.x

Broadcast Messages
Up to 15 Slaves
Soft Reset
Simple Slaves
Speeds up to 26 MHz
Parity for Error Checks

Simple Slaves
Up to 15 Slaves
1 Master
Programmable IDs
Triggered Messaging
Bidirectional Serial Link
Many Message Types
1.8 or 1.2 VIO Support
Bidirectional Serial Link
Parity for Error Checks
Soft Reset
Simple Slaves
Speeds up to 26 MHz
Up to 15 Slaves
Programmable IDs
Triggered Messaging
Many Message Types
1.8 or 1.2 VIO Support

Copyright © 2015 MIPI Alliance. All rights reserved.
RFFE Register Mapping

Register Space:
- 0x00 – 0x1F (Basic)
- 0x20 – 0xFF (Extended)
- 0x100 – 0xFFFF (Extended Long)

Command Sequence Types
RFFE Control Bus Overview

Basic Register Write and Read Commands

<table>
<thead>
<tr>
<th>Description</th>
<th>SSC</th>
<th>Command Frame</th>
<th>Data Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register Write</td>
<td>1</td>
<td>0 1 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>Register Read</td>
<td>0</td>
<td>0 1 1</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

The components of a RFFE message.
- **SSC**: Start Sequence Condition
- **Command Frame**
 - SA[3:0] = Slave Address addressing 15 slaves, SA=0 will broadcast to ALL slaves
- **Parity calculated & inserted for each Frame in a Command Sequence**
- **Data or Address Frame**
- **Bus Park Cycle**
Trigger Registers

This is an illustration of how Triggers can work as defined by the MIPI RFFE Specification. In this illustration all the Triggers are enabled – in other words no Trigger Mask bits are set.
Trigger Registers

In this illustration only Triggers 1 & 2 are enabled. Since the Trigger Mask for Trigger 0 is set, Trigger 0 is disabled and thus data is written directly to the configuration registers, effectively bypassing the shadow registers.

<table>
<thead>
<tr>
<th>RFFE COMMAND</th>
<th>Write to Register A</th>
<th>Write to Register B</th>
<th>Set Trigger 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0A-12</td>
<td>7-0B-34</td>
<td>7-1C-01</td>
<td></td>
</tr>
<tr>
<td>Shadow A register</td>
<td>0xx</td>
<td>0x12</td>
<td></td>
</tr>
<tr>
<td>Register A</td>
<td>0xx</td>
<td>0x12</td>
<td></td>
</tr>
<tr>
<td>Shadow B register</td>
<td>0xx</td>
<td>0x34</td>
<td></td>
</tr>
<tr>
<td>Register B</td>
<td>0xx</td>
<td>0x34</td>
<td></td>
</tr>
</tbody>
</table>
MIPI RFFE v2.0
Why was RFFE v2.0 developed?

• Background for the RFFE v2.0 development
 – RFFE v1.0 development was on a very aggressive schedule
 • Thus only core features were targeted for this release
 • Other features were intentionally left for later development and inclusion
 – After RFFE v1.0 and v1.1 were released, the WG turned its attention towards addressing potential improvements and extensions to RFFE
 • Forward-looking features
 • Features list was developed by the WG: Inputs from WG members, and from multiple surveys (MIPI and IWPC)
 • WG down-selected features to be included in v2.0 prior to detailed development
 – Backward-compatibility with RFFE v1.x was of prime importance in selecting and developing the new features
 • An RFFE v1.x Slave will still work in RFFE v2.0 systems, although primarily to only v1.x features.
 – RFFE v2.0 expands and improves upon the capabilities provided by RFFE v1.x, and provides a solid foundation for the future of RF front-end architectures.
What’s New in MIPI RFFE v2.0?

Key New and Improved Features

• **Electrical & Digital Details**
 – Extended Frequencies – increased command sequence bandwidth capabilities
 – Synchronous Read introduction – Allows for a wider range of bus loading by allowing more time for data propagation on the bus by Slaves, and also enables Extended Frequencies

• **Flexible Bus Configuration**
 – Multi-Master - supporting Carrier Aggregation (CA) system architectures

• **Multiple Message types**
 – Interrupt-Capable Slave functionality – quicker response opportunities for Slave Devices to report to Master(s)
 – New Reserved Registers and functions – Common function register locations easing hardware and software development
MIPI RFFE v2.0: Multi-Master

Requirements driving the RFFE v2.0 Multi-Master Feature:

- Monitoring of Alternate Bands
- Carrier Aggregation
- Transceiver Platform Architecture

- Only one Bus Owner Master (BOM) at any one time. Other Masters may monitor the bus.
- Arbitration (and associated timing uncertainties) avoided with scheme chosen.
- RFFE v2.0 Architectures May Remain Single Master

OPTIONAL Multi-Master RFFE Bus Configuration
MIPI RFFE v2.0: Extended Frequencies

Extended Frequency Range **DOUBLES** the number of Command Sequences that can be transferred on the bus in a given amount of time.

- Double the standard rate exists in the “forward” direction, i.e. Master-to-Slaves for Write types of Command Sequences where the Master (BOM) is driving SDATA.
 - The “forward” direction is typically the most timing-critical control path in an RF Front-End, and also accounts for a majority of bus traffic.
- Due to timing limitations in the read-back path, Extended Frequency is not possible when the BOM is not driving SDATA.
- However, the RFFE 2.0 sRead feature allows virtually all Slaves to utilize Full-Speed in the existing Standard Frequency Range, thus achieving higher performance in the “reverse” path as well.
MIPI RFFE v2.0: Interrupt-Capable Slaves (ICS)

• In RFFE v1.x the only way for a Slave to notify the Master of some condition or communicate back to the Master is through a Read Command Sequence (which may be initiated only by the Master)

• ICS (Interrupt-Capable Slave) features were developed with the following guidelines:
 – Feature needed to be In-Band: No additional signals or wires were desired
 – (BOM) Master needs to retain control of the bus at all times to ensure that bus timing may remain deterministic
 – Provide the possibility of as close to a “real-time” response as possible

• ICS is an optimized multiple-device polling feature
 – ICS feature is not a “traditional” interrupt - but rather a quick polling method
 – One new RFFE Cmd Seq created for ICS; majority of ICS ops use existing CSs
 – ICS supports up to 16 different interrupts on an RFFE bus (with up to 4 / Slave)
MIPI RFFE v2.0: Interrupt-Capable Slaves (ICS)

Configuration Phase
[Only needed at ICS set up or configuration changes]

Quick Interrupt Scan
(Of **All** ICS Enabled Slaves)
[Optimized for Time-Minimized Polling of Any/All Interrupt Requests]

Identification / Servicing / Clearing Phase
[Used only when Interrupts must be Identified, Serviced, and/or Cleared]
MIPI RFFE v2.0: New Reserved Registers

RFFE v1.x

<table>
<thead>
<tr>
<th>Register (bits 7:0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM_TRIG</td>
</tr>
<tr>
<td>PRODUCT_ID</td>
</tr>
<tr>
<td>MANUFACTURER_ID</td>
</tr>
<tr>
<td>MAN_&_USID</td>
</tr>
</tbody>
</table>

RFFE v2.0

<table>
<thead>
<tr>
<th>Register (bits 7:0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM_TRIG</td>
</tr>
<tr>
<td>PRODUCT_ID</td>
</tr>
<tr>
<td>MANUFACTURER_ID</td>
</tr>
<tr>
<td>MAN_&_USID</td>
</tr>
<tr>
<td>EXT_PRODUCT_ID</td>
</tr>
<tr>
<td>REV_ID</td>
</tr>
<tr>
<td>GSID0-GSID1</td>
</tr>
<tr>
<td>UDR_RST</td>
</tr>
<tr>
<td>ERR_SUM</td>
</tr>
<tr>
<td>INT_MAP0-1</td>
</tr>
<tr>
<td>INT_MAP2-3</td>
</tr>
<tr>
<td>INT_EN0</td>
</tr>
<tr>
<td>INT_EN1</td>
</tr>
<tr>
<td>INT_CLR0</td>
</tr>
<tr>
<td>INT_CLR1</td>
</tr>
<tr>
<td>BUS_LD</td>
</tr>
</tbody>
</table>

NEW REGISTERS

- User-Defined Extended Product & Revision ID
- GSID register defined
- Error Logging & Software Reset (retain U/GSID, Triggers, etc)
- Interrupt Maps, Enables, and Clears
- Slave SDATA Bus Load
MIPI RFFE Roadmap v2.1?
MIPI RFFE v2.1: Future Enhancements

What comes after RFFE v2.0?

- The Working Group has begun to gather ideas for the next release and some of these ideas are outlined below.

 Electrical & Digital Details
 - Longer Trace Lengths
 - RFFE over M.2 Connector/Socket

 Flexible Bus Configuration
 - Potential Extension of the Manufacturer ID Bit Field

 Multiple Message types
 - Optional extensions to the Master Write (& Read?) CS(s)
 - Software Considerations

 The WG welcomes additional members and contributions!
MIPI RFFE Documents and Website
MIPI RFFE: Documents

RFFE Specification and Supporting Documents (available to all MIPI Members)

- https://members.mipi.org/wg/All-Members/home/approved-specs#RFFE

MIPI® Specification for RF Front-End Control Interface (RFFE℠) v1.10:

- Specification: Version 1.10 – November 2011
- Application Note: Version 1.10 – November 2011
 - Usage examples (Triggers, Group Slave IDs, Resolving USID Conflicts, etc.)
 - FAQs
- PICS: Version 1.10 – October 2011
 - Protocol Implementation Conformance Statement, Checklist for vendors

MIPI® Specification for RF Front-End Control Interface (RFFE℠) v2.0:

- Application Note: Version 2.0 – February 2015
- FAQ: Version 2.0 – February 2015
- Conformance Test Specification (CTS): Version 2.0 – (estimated release: 3Q15)
MIPI/RFFE Website

• Questions to the WG? Contact PM: rob.anhofer@mipi.org

• Questions from Press/other? Contact Marketing: jennifer.mcaleer@mipi.org

• Public website – RFFE WG: http://mipi.org/working-groups/rf-front-end

• MIPI Contributor and Board Members are welcome to join the WG:
 – Member website (request a member login): https://members.mipi.org/site/login
 • Access to WG mail reflector and discussions, file repository, calendar, meeting agendas and minutes, schedules and access to Bugzilla change request system
 – Weekly WG meetings: Wednesday’s @ 8:30am PST / 11:30am EST / 17:30 CET (2hr)
 • Next RFFE WG conference call is February 25, 2015 (no call Feb-18)
 – RFFE WG calendar: https://members.mipi.org/wg/RF-FE/calendar
 – RFFE WG dashboard: https://members.mipi.org/wg/RF-FE/workgroup

• Next RFFE WG F2F Meeting:
 – Seattle, USA: Tuesday March 10 to Thursday March 13, 2015
 – Includes MIPI Open Day session with RFFE presentation and Q&A session