Hyoung-Bae Choi
Synopsys

Powering AI and Automotive Applications with the MIPI Camera Interface
Agenda

Adoption of MIPI CSI-2℠ Image sensors beyond mobile AI and automotive examples
CSI-2 interface overview
Meeting reliability requirements of automotive applications
Supporting artificial intelligence (AI) applications
Summary
MIPI Specifications in New Applications
Automotive, IoT / Wearables, Virtual / Augmented Reality
Industrial & Surveillance Applications

Using MIPI CSI-2 Image Sensors
Example of MIPI in an Automotive Application

MIPI CSI-2 Image Sensors & DSI Display

- Power Supply
- MPU
- Proprietary, LVDS or Ethernet Switch
- Front Camera Module
- Left Camera Module
- Right Camera Module
- Rear Camera Module
- Other Camera Module
- Other Camera Module
- DRAM
- Flash Memory
- LVDS or Ethernet Link
- V_{bat}
- Display
- CAN Interface
- MIPI DSI Display
- LVDS or Ethernet Switch
- MIPI CSI-2 Image Sensors
- Front Camera
- Left Camera
- Right Camera
- Rear Camera
- Other Camera
Safety-Critical ADAS Applications

Require ISO 26262 Functional Safety Compliance and ASIL Certification

Electronics failure can have hazardous impact
MIPI Specs for Automotive Applications

Infotainment
- Navigation
- Audio/Video
- Entertainment

Driver Information
- Instrument clusters
- Voice recognition
- Hi-def displays
- Surround view

Vehicle Networks & V2X
- Real time video & data network
- Gateways
- Telematics
- V2V
- V2I
- Security

Driver Assistance
- Parking assist
- Lane departure warning & Lane keep aid
- Pedestrian detection & correction
- Automatic emergency braking
Centralized ADAS Domain Controller SoC Architecture

Encompassing Numerous IP

- Interfaces: LPDDR4/4x, Ethernet AVB/TSN, MIPI, HDMI, PCI Express, SATA, ADC
- Embedded vision
- Security
- Sensor fusion
- Going to advanced process nodes
- Requires functional safety
Key Requirements of Automotive-Grade IP
Reduce Risk and Accelerate Qualification for Automotive SoCs

- **Functional Safety**: Accelerate ISO 26262 functional safety assessments to help ensure designers reach target ASIL levels
- **Reliability**: Reduce risk & development time for AEC-Q100 qualification of SoCs
- **Quality**: Meet quality levels required for automotive applications
Artificial Intelligence

• Artificial Intelligence mimics human behavior
• Machine learning uses advanced statistical models to find patterns & results
• Deep learning is a specialized subset of machine learning using neural networks data to recognize patterns
Edge Inference Connectivity for Deep Learning

Cloud Connectivity
- Ethernet

Chip-to-Chip Connectivity
- PCI Express
- CCIX

Super Image Resolution
- USB/DP
- HDMI

Vision
- MIPI CSI-2 & MIPI D-PHY

Memory Performance
- DDR/LPDDR
- HBM2
- Embedded Memories & Logic Libraries

Audio
- USB
- PDM/I2S
- ARC Data Fusion IP Subsystem

Wireless Sensor Connectivity
- Bluetooth 5 Link Layer & PHY
- 802.15.4 MAC & PHY

Sensor Connectivity
- MIPI I3C Controller
- ARC Sensor and Control IP Subsystem
Deep Learning SoC Challenges
Unique Requirements for Processing, Memory, Connectivity

- Heterogeneous processing (scalar, vector, neural network)
- Massively parallel, matrix multiplication (neural network)
- Model compression via pruning and quantization – (Increases irregular compute intensity and memory accesses)

Specialized Processing

- Capacity and bandwidth constraints
- Cache coherency requirements
- Advanced processes maximize on-chip SRAM to reduce data movement

Memory Performance

- Reliable and configurable connectivity to AI data centers
- Real-time interface to sensors, images, audio, cloud, and more
- Reduced energy via power management features and FinFET technologies

Real-Time Connectivity
MIPI CSI-2 Specification
MIPI Camera Serial Interface 2 (CSI-2)

Key Improvements; From Mobile to Imaging & Vision

<table>
<thead>
<tr>
<th>CSI-2 Specification version</th>
<th>Approval Date</th>
<th>v1.x</th>
<th>v2.x</th>
<th>v3.X</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>vX.0</td>
<td>29-Nov’05</td>
<td></td>
<td>28-Mar’17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>First release</td>
<td></td>
<td>- D-PHY v2.1 support</td>
<td>- D-PHY v3.0 support</td>
<td>Target: Q4’18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- C-PHY v1.2 support</td>
<td>- C-PHY v2.0 support</td>
<td>- RAW24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- RAW 16/20 & DPCM 12-10-12</td>
<td>- RAW24</td>
<td>- EoTp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- PPI width extension (up to 32)</td>
<td>- LRTE</td>
<td>- USL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Scrambling</td>
<td>- Scrambling</td>
<td>- USL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Extension of Virtual Channel</td>
<td>- Extension of Virtual Channel</td>
<td>- sROI - Phase 1</td>
</tr>
<tr>
<td>vX.01</td>
<td>14-Feb’11</td>
<td></td>
<td>09-Apr’18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-PHY™ v1.0 support</td>
<td></td>
<td>- I3C SDR & HDR_DRR support</td>
<td>- GLD</td>
<td></td>
</tr>
<tr>
<td>vX.1</td>
<td>14-Feb’11</td>
<td></td>
<td>09-Apr’18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-PHY 1.0 support</td>
<td></td>
<td>- RAW24</td>
<td>- AR/VR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- EoTp</td>
<td>- Security</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Interleaved Encryption</td>
<td>- Functional Safety</td>
<td>- Sync Image Sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vX.2</td>
<td>10-Sep’14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-PHY v1.2 support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vX.3</td>
<td>07-Oct’14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-PHY v1.0 support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Target: Q4’19
- GLD
- sROI - Phase 2
- AR/VR
- Security
- Functional Safety
- Sync Image Sensor
- Unified Packet Header
- A-PHY
MIPI CSI-2 Over D-PHY

Packet Builder
- Data Format Definition
 - Virtual Channel Identification
- Payload byte size
- Data CRC processing
 - ECC protecting the header

CSI-2 Host
- Frame Buffer
- CSI-2 Receiver
 - Packet Decoder
 - Lane Merger
- CCI Master
 - SCL
 - SDA

CSI-2 Device
- Frame Buffer
- CSI-2 Transmitter
 - Lane Distribution
 - Packet Builder
 - D-PHY
 - HS Burst
- CCI Slave
 - SCL
 - SDA

CSI-2 Packet Builder
- Lane Distribution
- Packet Builder
- D-PHY
- HS Burst
- CSI-2 Packet

CSI-2 Transmitter
- Lane Distribution
- Packet Builder
- D-PHY
- HS Burst
- CSI-2 Packet

CSI-2 Receiver
- Packet Decoder
- Lane Merger
- CSI-2 Packet

CSI-2 Receiver
- Frame Buffer
- Packet Decoder
- Lane Merger
- CSI-2 Packet

CCI Master
- SCL
- SDA

CCI Slave
- SCL
- SDA

Data Format Definition
- Virtual Channel Identification
- Payload byte size
- Data CRC processing
 - ECC protecting the header
New Imaging Features for Automotive and Other Applications

- RAW-16 and RAW-20 color depth
- Latency Reduction and Transport Efficiency (LRTE) feature
- Differential Pulse Code Modulation (DPCM) 12-10-12 compression
- Scrambling to reduce Power Spectral Density (PSD) emissions
- Expanded number of virtual channels from 4 to 32

Image Quality/HDR - Latency - Reliability - Aggregation

Source: MIPI Alliance
RAW-16 & RAW-20 Color Depths

• CSI-2 v1.3 color depths are sufficient for Mobile. Visually, there is almost no change between RAW14 and RAW16/20
• RAW-16 and RAW-20 color depth bring advanced vision capabilities to Automotive and Industrial applications
 – Improves image capture when the environment changes suddenly and dramatically, for example in a big change in lighting condition
Up to 32 Virtual Channels

- To accommodate the larger number of image sensors and their multiple data types
- To support multi-exposure and multi-range sensor fusion for Advanced Driver Assistance Systems
Added Latency Reduction & Transport Efficiency (LRTE)

- LRTE reduces frame transport latency & leakage power due to frequent "High Speed - Low Power" transitions.
- This will enhance image sensor aggregation and multi exposure for real-time perception and decision making applications.
Scrambling and New Compression Scheme

• Galois Field Scrambling reduces power spectral density (PSD) emissions
 — Minimizes PSD emissions from aggressor components, which are particularly beneficial when placed near sensitive receiver

• New DPCM 12-10-12 compression to further boost image quality
 — Superior SNR using reduced bandwidth PHY
 — Removes more compression artifacts when comparing with previous MPI CSI-2 v1.3 compression mode
MIPI D-PHY Architecture
The Popular Physical Layer for MIPI CSI-2 and DSI Protocols

- Synchronous Forwarded DDR clock link architecture
- One clock and multiple data lanes configuration
- Static/dynamic de-skew supported through calibration
- Calibration hand-shake not supported
- No encoding overhead
- Low-power and high-speed modes
- Primarily targeting camera and display
- Spread spectrum clocking supported for EMI/EMC considerations
- Large eco-system, proven in millions of phones, cars
Benefits and Evolution of MIPI D-PHY

- Higher data rate enables ultra-high-definition cameras and displays
- Easier adaptation of newer technologies
- Backward compatible
- Reliable with sufficient margins
- New specs augment existing ecosystem
- Growing market applications and segments
- Longer channel length

Rx D-PHY Specification Version

<table>
<thead>
<tr>
<th></th>
<th>D-PHY v2.1</th>
<th>D-PHY v2.0</th>
<th>D-PHY v1.2</th>
<th>D-PHY v1.1</th>
<th>D-PHY v1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed (Gbps)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Deskew</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deskew</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

Cells containing dashes (—) indicate that Deskew initialization is not required.
MIPI I3C℠ Specification
MIPI I3C Overview

- Two wire serial Interface up to **12.5 MHz**
- **Supports Legacy I²C Slave** Devices
- I3C Single Data Rate (SDR) Mode
- I3C High Data Rate (HDR) Modes
- In-band Interrupts, Command support
- Dynamic Addressing
- Timing synchronization (aSync, Sync)

I2C FM : Upto 400Kbps
I2C FM+ : Upto 1Mbps
I3C SDR : 11.1 Mbps*
I3C HDR-DDR : 22.2 Mbps*
I3C HDR-TSL : 25.6 Mbps*
I3C HDR-TSP : 33.4 Mbps*

*SCL@12.5Mhz

I/Os reduced to just two!!
MIPI CSI-2, D-PHY & I3C

• Supports advances in imaging for new applications: Health, Convenience, Security, Lifestyle, Efficiency
• Camera Controller Interface (CCI) and Always-ON advancement considerations using I²C and future MIPI I3C
MIPI I3C Enables Efficient System Architectures

Example: Sensor Hub

Low Power, More Efficient System, Faster Data Transfer
Automotive Safety Features

DesignWare MIPI CSI-2 Device Controller IP

- ECC Protection on Packet Header stored in Memory
- ECC Protection on IDI/IPI Packet Header
- Parity Protection on IPI Data Path
- Parity Protection on Configuration Registers
- IPI/IDI Overflow Protection
- CRC Protection on Packet data path
- IDI Header and payload Data checks
- Module Redundancy Protection for critical logic e.g. Error Handling, Channel Select

Certification for ISO 26262 Part 5 HW
Camera & Sensor Connectivity for Machine Vision

DesignWare MIPI CSI-2 and I3C Solutions

- Supports enhanced color depth using RAW16/20 formats for machine vision
- Multiple virtual channels accommodate larger number of image sensors supporting multi-exposure and multi-range sensor fusion
- Connect multiple sensors and cameras on a standard I3C two-wire interface
VC Verification IP for MIPI

Integration
Testbench/VIP Languages & Methodologies

Performance
Number and Length of Tests

Coverage
Complete solution for Planning and Coverage

Debug
Signal to Protocol

- CSI-2 up to 2.1 with C-PHY up to 1.2 and DPHY up to 2.1
- DSI-2 1.0 with C-PHY 1.1 and DPHY 2.0
- DSI up to 1.3 with D-PHY up to 1.2
- DigRF v4 1.10, 1.00 and 0.64
- DBI 2.0
- DPI 2.0
- HSI
- I3C 1.1
- SoundWire
- RFFE
- SPMI 2.0
- M-PHY 4.1/4.0
- UniPro 1.8/1.6
VC Verification IP for MIPI CSI-2

Architecture and Key Features

- **Source code Test Suite (optional)**
- **Specifications supported**
 - CSI-2 2.1/2.0 with C-PHY 1.2/1.1 and D-PHY 2.1/2.0
 - CSI-2 1.3 with C-PHY 1.0 and D-PHY 1.2
 - CSI-2 1.1/1.2 with D-PHY 1.2/1.0
- **CSI-2 Transmitter and Receiver**
- **Physical Layer**
 - Configurable to C-PHY/D-PHY
 - Serial and Parallel (PPI) interface
 - High Speed and Escape Mode
 - Multi-Lane support (1 to N)
 - Configurable global timing parameters
 - Run-time reconfiguration of dynamic parameters
 - Lane transaction error injection
- **Protocol Layer**
 - 4 virtual channels (CSI-2 1.x)
 - 16 virtual channels (CSI-2 2.0 with D-PHY)
 - 32 virtual channels (CSI-2 2.0 with C-PHY)
 - All types of packets (short and long)
 - Interleaved and normal frames
 - Operative/Inoperative line and frame number
 - ECC generation, CRC generation and checking
 - Error detection and recording
 - Data Scrambling Support
 - Compression for RAW Data Type Support
 - LRTE with D-PHY and C-PHY
Silicon-Proven DesignWare MIPI IP Solutions

Single-Vendor Solution, Production-Proven, Interoperable

Complete camera, display and sensor interface IP solutions

- MIPI CSI-2, D-PHY and I3C protocols
 - Proven in 65nm - 7nm nodes customer designs
 - Automotive grade 1 and grade 2 PHYs
- Enables new set of applications in Automotive, AR/VR, IoT markets
 - Lowers integration risk for application processors, bridge ICs and multimedia co-processors
- Future proof IP supporting variety of speeds, proven in silicon
 - Reduces cost and power for multiple instantiations
 - Testability features enable low cost manufacturing
ADDITIONAL RESOURCES

• Synopsys DesignWare MIPI IP Solutions
 – www.synopsys.com/mipi

• MIPI CSI-2 Spec URL
 – https://mipi.org/specifications/csi-2
mipi
DEVCON
THANK YOU

MIPi ALLIANCE
developers conference
19 October 2018
Seoul