mipi[®] DEVCON

Hyoung-Bae Choi Synopsys

Powering AI and Automotive Applications with the MIPI Camera Interface MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL

Adoption of MIPI CSI-2sm Image sensors beyond mobile

AI and automotive examples

CSI-2 interface overview

Meeting reliability requirements of automotive applications

Supporting artificial intelligence (AI) applications

Summary

MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 SEOUL

MIPI.ORG/DEVCON | 2018

SYNOPSYS[®]

MIPI Specifications in New Applications

Automotive, IoT / Wearables, Virtual / Augmented Reality

© 2018 MIPI Alliance, Inc.

Industrial & Surveillance Applications

Using MIPI CSI-2 Image Sensors

MIPI.ORG/DEVCON | 2018

CONFERENCE 19 OCTOBER 2018 SEOUL

mipi**DEV**CON Example of MIPI in an Automotive Application

MIPI CSI-2 Image Sensors & DSI Display

Safety-Critical ADAS Applications

Require ISO 26262 Functional Safety Compliance and ASIL Certification

Electronics failure can have hazardous impact

MIPI Specs for Automotive Applications

mipi **DEV**CON Centralized ADAS Domain Controller SoC Architecture

Encompassing Numerous IP

- Interfaces: LPDDR4/4x, Ethernet AVB/TSN, MIPI, HDMI, PCI Express, SATA, ADC
- Embedded vision
- Security
- Sensor fusion
- Going to advanced process nodes
- Requires functional safety

mipi**DEV**CON Key Requirements of Automotive-Grade IP

Reduce Risk and Accelerate Qualification for Automotive SoCs

Artificial Intelligence

Artificial Intelligence Mimics human behavior

Machine Learning Uses advanced statistical algorithms to improve AI

- Artificial Intelligence mimics human behavior
- Machine learning uses advanced statistical models to find patterns & results
- Deep learning is a specialized subset of machine learning using neural networks data to recognize patterns

© 2018 MIPI Alliance, Inc.

Edge Inference Connectivity for Deep Learning

Cloud Connectivity

Ethernet

- Bluetooth 5 Link Layer & PHY
- 802.15.4 MAC & PHY

- MIPI I3C Controller
- ARC Sensor and Control IP Subsystem

SYNOPSYS[®]

© 2018 MIPI Alliance, Inc.

Deep Learning SoC Challenges Unique Requirements for Processing, Memory, Connectivity

 \bigcirc

Specialized Processing	 Heterogeneous processing (scalar, vector, neural network) Massively parallel, matrix multiplication (neural network) Model compression via pruning and quantization – (Increases irrecompute intensity and memory accesses) 	egular
Memory Performance	 Capacity and bandwidth constraints Cache coherency requirements Advanced processes maximize on-chip SRAM to reduce data more 	ovement
Real-Time Connectivity	 Reliable and configurable connectivity to AI data centers Real-time interface to sensors, images, audio, cloud, and more Reduced energy via power management features and FinFET technologies 	
	Synopsys®	
018 MIPI Alliance, Inc.	MIPI.ORG/DEVCON 2018	12

MIPI CSI-2 Specification

© 2018 MIPI Alliance, Inc.

MIPI Camera Serial Interface 2 (CSI-2)

Key Improvements; From Mobile to Imaging & Vision

CSI-2 Specification version Approval Date	<u>v1.x</u>	<u>v2.x</u>	<u>v3.X</u>	TBD				
vX.0	29-Nov'05First release.	 28-Mar'17 D-PHY v2.1 support C-PHY v1.2 support RAW 16/20 & DPCM 12-10-12 PPI width extension (up to 32) LRTE Scrambling Extension of Virtual Channel 	 Target: Q4'18 D-PHY v3.0 support C-PHY v2.0 support RAW24 EoTp USL sROI - Phase 1 	Target: Q4'19 • GLD • sROI - Phase 2 • AR/VR • Security • Functional Safety • Sync Image Sensor • Unified Packet Header • A-PHY				
vX.01	14-Feb'11 • D-PHY ^s v1.0 support							
vX.1	14-Feb'11D-PHY 1.0 support	 09-Apr'18 I3C SDR & HDR_DRR support RAW24 EoTp Interleaved Encryption 						
vX.2	10-Sep'14D-PHY v1.2 support							
vX.3	07-Oct'14 • C-PHY v1.0 support							
SYNOPSYS®								

MIPI CSI-2 Over D-PHY

Mipi DEVCON New Imaging Features for Automotive and Other Applications

- RAW-16 and RAW-20 color depth
- Latency Reduction and Transport Efficiency (LRTE) feature
- Differential Pulse Code Modulation (DPCM) 12-10-12 compression
- Scrambling to reduce Power Spectral Density (PSD) emissions
- Expanded number of virtual channels from 4 to 32

Image Quality/HDR - Latency - Reliability - Aggregation

Source: MIPI Alliance

16

Synopsys[®]

RAW-16 & RAW-20 Color Depths

- CSI-2 v1.3 color depths are sufficient for Mobile. Visually, there is almost no change between RAW14 and RAW16/20
- RAW-16 and RAW-20 color depth bring advanced vision capabilities to Automotive and Industrial applications
 - Improves image capture when the environment changes suddenly and dramatically, for example in a big change in lighting condition

Up to 32 Virtual Channels

- To accommodate the larger number of image sensors and their multiple data types
- To support multi-exposure and multi-range sensor fusion for Advanced Driver Assistance Systems

MIPI.ORG/DEVCON | 2018

SEOUL

mipi^{DEV}CON Added Latency Reduction & Transport Efficiency (LRTE)

- LRTE reduces frame transport latency & leakage power due to frequent "High Speed - Low Power" transitions.
- This will enhance image sensor aggregation and multi exposure for realtime perception and decision making applications

Scrambling and New Compression Scheme

SYNOPSYS[®]

- Galois Field Scrambling reduces power spectral density (PSD) emissions
 - Minimizes PSD emissions from aggressor components, which are particularly beneficial when placed near sensitive receiver
- New DPCM 12-10-12 compression to further boost image quality
 - Superior SNR using reduced bandwidth PHY
 - Removes more compression artifacts when comparing with previous MPI CSI-2 v1.3 compression mode

CSI-2 over D-PHY PSD emission reduction

MIPI D-PHY Architecture

The Popular Physical Layer for MIPI CSI-2 and DSI Protocols

- Synchronous Forwarded DDR clock link architecture
- One clock and multiple data lanes configuration
- Static/dynamic de-skew supported through calibration
- Calibration hand-shake not supported
- No encoding overhead
- Low-power and high-speed modes
- Primarily targeting camera and display
- Spread spectrum clocking supported for EMI/EMC considerations
- Large eco-system, proven in millions of phones, cars

MIPI.ORG/DEVCON | 2018

SYNOPSYS[®]

Benefits and Evolution of MIPI D-PHY

- Higher data rate enables ultrahigh-definition cameras and displays
- Easier adaption of newer technologies
- Backward compatible
- Reliable with sufficient margins
- New specs augment existing ecosystem
- Growing market applications and segments
- Longer channel length

		Rx D-PHY Specification Version									
		D-PHY v2.1		D-PHY v2.0		D-PHY v1.2		D-PHY v1.1		D-PHY v1.0	
		Max Speed (Gbps)	Deskew Initialization	Max Speed (Gbps)	Deskew Initialization	Max Speed (Gbps)	Deskew Initialization	Max Speed (Gbps)	Deskew Initialization	Max Speed (Gbps)	Deskew Initialization
	D-РНҮ v1.0	1.0	-	1.0	-	1.0	_	1.0	-	1.0	_
n Version	D-РНҮ v1.1	1.5	_	1.5	-	1.5	-	1.5	_	1.0	_
icatio	.2 HY	2.5	Yes	2.5	Yes	2.5	Yes	1.5	_	1.0	_
pecif	а 4 2	1.5	-	1.5	-	1.5	-	1.5			
S YH	¥∘.	4.5	Yes	4.5	Yes	2.5	Yes	4 5	—	1.0	_
	4 2	1.5	-	1.5	-	1.5	-	1.5			
	누 두.	4.5	Yes	4.5	Yes	2.5	Yes	1.5	_	1.0	_
	2 C	1.5	-	1.5	-	1.5	-				
Note: C	ells conta	nining das	hes ('–') i	indicate tl	hat Deske	w Initializ	ation is n	ot require	d	MIPI DEV	ALLIANCE

MIPI.ORG/DEVCON | 2018

FOU

MIPI I3C [™] Specification

© 2018 MIPI Alliance, Inc.

MIPI.ORG/DEVCON | 2018

23

MIPI I3C Overview

- Two wire serial Interface up to **12.5 MHz**
- Supports Legacy I²C Slave Devices
- I3C Single Data Rate (SDR) Mode
- I3C High Data Rate (HDR) Modes
- In-band Interrupts, Command support
- Dynamic Addressing
- Timing synchronization (aSync, Sync)

I2C FM	: Upto 400Kbps
I2C FM+	: Upto 1Mbps
I3C SDR	: 11.1 Mbps*
I3C HDR-DDR	: 22.2 Mbps*
I3C HDR-TSL	: 25.6 Mbps*
I3C HDR-TSP	: 33.4 Mbps*
* SCL@12.5Mhz	

MIPI CSI-2, D-PHY & I3C

- Supports advances in • imaging for new applications: Health, Convenience, Security, Lifestyle, Efficiency
- Camera Controller Interface (CCI) and Always-ON advancement considerations using I²C and future MIPI I3C

Primary Camera Module

© 2018 MIPI Alliance, Inc.

MIPI.ORG/DEVCON 2018

SYNOPSYS[®]

9 OCTOBER 2018 SEOU

mipi^{DEV}CON MIPI I3C Enables Efficient System Architectures

Example: Sensor Hub

Low Power, More Efficient System, Faster Data Transfer

© 2018 MIPI Alliance, Inc.

Meeting Automotive and AI Requirements

© 2018 MIPI Alliance, Inc.

ASIL B

Automotive Safety Features

DesignWare MIPI CSI-2 Device Controller IP

MIPI.ORG/DEVCON | 2018

MIPI ALLIANCE

DEVELOPERS

SEOUL

mipi^{DEV}CON Camera & Sensor Connectivity for Machine Vision

DesignWare MIPI CSI-2 and I3C Solutions

- Supports enhanced color depth using RAW16/20 formats for machine vision
- Multiple virtual channels accommodate larger number of image sensors supporting multi-exposure and multi-range sensor fusion
- Connect multiple sensors and cameras on a standard I3C two-wire interface

Complete Camera Solutions for Vision SoC

MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 SEOUL

29

MIPI.ORG/DEVCON | 2018

SYNOPSYS[®]

VC Verification IP for MIPI

Integration Testbench/VIP Languages & Methodologies

Coverage Complete solution for Planning and Coverage

Performance Number and Length of Tests

📮 🏭 Search: 🦲	- 🖸 🖉 🕯	SQ 7 0	xiro 🔳 🗷		3 Line: 34	Rule: ps/Generic_rule.re 💽	
viste_intermediste_so_	serial.log 🗶						
	10,000,000	10,000	.000	20,000.000	40,000,000	k0,000,000 j	10,000,000
UVM_INFO 0 0: report UVM_INFO /slowfs/sg UVM_INFO /slowfs/sg UVM_INFO /global/ag	ter (\$9797) Furni _homef/jun_thes/v _homef/jun_thes/v ps/dw_latest/vip/	ng test intermediat TP_test/new_usB/eam TP_test/new_usB/eam bvt/common/x-2015.1	e_ss_serial sples/sverilog/usb_ sples/sverilog/usb_ /sverilog/src/vcs/	sv1/10_ss0_sv1_sv8_i/is sv1/10_ss0_sv1_sv8_i/is sv1_ss0_sv1_sv8_i/is sv1_ss0_sv1_st8_base	rmediate_sys/tests rmediate_sys/env/u svp(1623) © 0: rep	/is intermediate_se_serial ov db_base_test_sv(80) @ 0: vve_ orter [new] VIS-SV simulation	(45) 0 0 uve_test_top [but test_top [build_phase] Ente
	5 🕸 🕹 🕹 🕹	×lpo	1 A 🖾 🗞 🗞 I	11 A & 2 A P			
The Quick Filter Protoco	14		8 I I	0,000,000 1	91 biz.opiz.opi	1	soludo 1
Hier	Count	14		aut	neo? handecas.como?	_in" manufacture_correct	uni ak ni bak nati k car
8 Packet	100	ev_spert Transferen			Providence in the local		
8 IN Link born	364						and countered and the second
8-05 LPPS_Sign	eling 32					Capital Sec. or	
* host agentitie	EVT1 668						
- uvve test top	108,705	arvice_sequenced					
⊖ erw	108,705			hert physical, data			
link serve	e seque 1						
usb_ss_d	15 sequ. 54.209			and a second second second			
010_00_00	1/5_647V(. 41		perform_physical_montex	.demetion*			
- 450,20,4	ita segu. 1		· · ·	e 200 200 , 20 000 0	w, baccoccoc	. 41.001.001	10.000, 80.000,000,
- USB_20_pi	us_servi 1	11 11 12	5				
0.0 N X 10 1	3. I b (a		• a che			(a) +1 (B)	
0.110.001		11					. 5 66 60
				Design of the local sectors	APRA APRIL IPPE APRIL APR	TANK AND DESCRIPTION OF	1, Manual 1, 1, 183
		1	ບການເມ				
		0	JU				
nst/usb_dev_if/esb_s		1	100				n
		5	P	19.999.896 39.99	a. 469 139 .999 .	993 149. PSO, 999 159.	100,000 109,000,000 .
	13	1 57 13	(1)				
5 5 5 6 5 5 C 10	10071001						

Debug Signal to Protocol

- CSI-2 up to 2.1 with C-PHY up to 1.2 and DPHY up to 2.1
- DSI-2 1.0 with C-PHY 1.1 and DPHY 2.0
- DSI up to 1.3 with D-PHY up to 1.2
- DigRF v4 1.10, 1.00 and 0.64
- DBI 2.0
- DPI 2.0
- HSI
- I3C 1.1
- SoundWire
- RFFE
- SPMI 2.0
- M-PHY 4.1/4.0
- UniPro 1.8/1.6

VC Verification IP for MIPI CSI-2

Architecture and Key Features

- Source code Test Suite (optional)
- Specifications supported
 - CSI-2 2.1/2.0 with C-PHY
 1.2/1.1 and D-PHY 2.1/2.0
 - CSI-2 1.3 with C-PHY 1.0 and D-PHY 1.2
 - CSI-2 1.1/1.2 with D-PHY 1.2/1.0
- •CSI-2 Transmitter and Receiver

•Physical Layer

- Configurable to C-PHY/D-PHY
- Serial and Parallel (PPI) interface
- High Speed and Escape Mode
- Multi-Lane support (1 to N)
- Configurable global timing parameters
- Run-time reconfiguration of dynamic parameters
- Lane transaction error injection

- Protocol Layer
 - 4 virtual channels (CSI-2 1.x)
 - 16 virtual channels (CSI-2 2.0 with D-PHY)
 - 32 virtual channels (CSI-2 2.0 with C-PHY)
 - All types of packets (short and long)
 - Interleaved and normal frames
 - Operative/Inoperative line and frame number
 - ECC generation, CRC generation and checking
 - Error detection and recording
 - Data Scrambling Support
 - Compression for RAW Data Type Support
 - LRTE with D-PHY and C-PHY

SYNOPSYS[®]

mipi^{DEV}CON Silicon-Proven DesignWare MIPI IP Solutions

Single-Vendor Solution, Production-Proven, Interoperable

Complete camera, display and sensor interface IP solutions

- MIPI CSI-2, D-PHY and I3C protocols
 - Proven in 65nm 7nm nodes customer designs
 - Automotive grade 1 and grade 2 PHYs
- Enables new set of applications in Automotive, AR/VR, IoT markets
 - Lowers integration risk for application processors, bridge ICs and multimedia co-processors
- Future proof IP supporting variety of speeds, proven in silicon
 - Reduces cost and power for multiple instantiations
 - Testability features enable low cost manufacturing

MIPI.ORG/DEVCON | 2018

SYNOPSYS[®]

ADDITIONAL RESOURCES

- Synopsys DesignWare MIPI IP Solutions
 - <u>www.synopsys.com/mipi</u>
- MIPI CSI-2 Spec URL
 - <u>https://mipi.org/specifications/csi-2</u>

mipi DEVCON THANK YOU

MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL