Miguel Rodriguez
Analogix Semiconductor

High-Performance VR Applications Drive High-Resolution Displays with MIPI DSI℠
Today’s Agenda

• VR Head Mounted Device (HMD) Use Cases and Trends
 – Cardboard, high-performance (tethered), all-in-one
 – Dedicated displays provide best user experience
 – Requirement for higher throughput for both video and data for high-end VR and mainstream VR

• MIPI DSISM delivers high performance for VR configurations
 – MIPI is the main interface for VR displays
 – Architecture examples: DisplayPort is the most common source for VR content
 – Combo MIPI C-PHYSM/D-PHYSM provides system flexibility for optimum performance
 – Leading VR display controller enables top VR headsets by leveraging key MIPI features

Analogix Semiconductor
VR Head Mounted Device (HMD) Use Cases

<table>
<thead>
<tr>
<th>Cardboard</th>
<th>Tethered</th>
<th>Standalone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduced in 2014</td>
<td>Introduced in 2016 and 2017; refreshed in 2018</td>
<td>Introduced in 2018</td>
</tr>
<tr>
<td>- Entry level, low cost VR system</td>
<td>- High-end level HMD with dedicated display(s) and sensors</td>
<td>- Mainstream, similar to cardboard predecessor</td>
</tr>
<tr>
<td>- Smartphone provides graphics engine, display and limited sensor capability</td>
<td>- Requires high-end GPU for video transmission</td>
<td>- Similar architecture as smartphones but tuned for VR use cases</td>
</tr>
<tr>
<td>- Apps running on smartphone provide VR experience</td>
<td>- Primary application is gaming and commercial/retail</td>
<td>- Uses higher performance display</td>
</tr>
<tr>
<td>VR Video Performance</td>
<td>VR Video Performance</td>
<td>VR Video Performance</td>
</tr>
<tr>
<td>- Limited by smartphone specs; i.e. displays with low resolution and refresh rates</td>
<td>- Higher resolution and refresh rates than smartphone displays (up to 2880x1600 and 120Hz respectively)</td>
<td>- Achieves higher resolution and refresh rates than cardboard but still less than tethered HMDs</td>
</tr>
<tr>
<td>- High heat dissipation from smartphone battery</td>
<td>- Lighter and lower heat dissipation</td>
<td>- Lower heat dissipation and lighter than cardboard predecessor</td>
</tr>
</tbody>
</table>

Dedicated VR displays provide the best user experience
High-End VR Head Mounted Device (HMD) Trends

<table>
<thead>
<tr>
<th>Year</th>
<th>Devices</th>
<th>Resolution</th>
<th>Refresh Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>HTC Vive, Oculus Rift</td>
<td>2160x1200 at 90Hz</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>HTC Vive Pro, SONY PSVR</td>
<td>2880x1600 at 90Hz</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>HTC Vive Pro, SONY PSVR, Microsoft MR, Huawei VR2</td>
<td>2880x1440 at 90Hz, 2880x1600 at 90Hz</td>
<td></td>
</tr>
<tr>
<td>2019 and beyond</td>
<td>VirtualLink (recently announced)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next Gen VR HMDs:
- Higher Resolutions
- Higher Refresh Rates
- Higher color depth
- Low persistence; i.e. fast scan-out
- Low power
- Etc.

Higher immersion experience drives the next gen high-end VR headsets
Mainstream VR Head Mounted Display (HMD) Trends

Performance

Today
- **VR Performance**
 - 2560 x 1440 @ 90 FPS
 - 2880 x 1600 @ 90 FPS
 - 3 DoF only; i.e. head orientation only

Tomorrow
- **VR Performance**
 - 2880 x 1600 @ 90 FPS
 - 3600 x 1800 @ 90 FPS
 - 6 DoF and Inside-out positional tracking

Beyond
- **VR Performance**
 - 3600 x 1800 @ 120 FPS
 - 3840 x 2160 @ 90 FPS
 - 6 DoF and inside-out positional tracking with room scale setup

6 DoF positional tracking, total immersive interaction, object detection, room-scale setup, etc.

6 DoF positional tracking \Rightarrow head orientation and movement along X, Y, Z axis; Inside-out positional tracking

3 DoF Positional tracking \Rightarrow head orientation only

Balance between performance, immersion and power is key for mainstream VR headsets
Case 1: High-End/Mainstream HMD with Standard Connections

VirtualLink use case bandwidth requirements are similar

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Challenge</th>
<th>MIPI Bridge Functions</th>
</tr>
</thead>
</table>
| 3840x1920 @ 120 FPS | 1. Total bandwidth required is 32Gbps
2. Uncompressed video | - MIPI C-PHYSM @ 1.2GSym/s provides enough bandwidth
- Supported over 12-Trio MIPI port configuration |
Case 2: Mainstream HMD with USB-C Input

Supports VirtualLink configurations as well

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Challenge</th>
<th>MIPI Bridge Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4800x2400 @ 90 FPS</td>
<td>1. Available input bandwidth: 16Gbps
2. Low persistence requirements for both OLED and LCD panels</td>
<td>- MIPI C-PHY(^{SM}) @ 1.2GSym/s
- Vertical Blanking Interval (VBI) expansion timing for low persistence on LCDs
- Supported over 12-Trio configuration</td>
</tr>
</tbody>
</table>
Case 3: High-End HMD with High Resolutions

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Challenge</th>
<th>MIPI Bridge Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000x4000 @ 90 FPS</td>
<td>Requires DSC compression at DisplayPort input and MIPI VR displays</td>
<td>- MIPI C-PHY<sup>SM</sup>/D-PHY<sup>SM</sup> @ 1.2GSym/s</td>
</tr>
<tr>
<td>6000x3000 @ 120 FPS</td>
<td></td>
<td>- DSC compression passthrough to VR display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Supported over quad-DSI or 12-Trio configuration</td>
</tr>
</tbody>
</table>

1. Requires DSC compression at DisplayPort input and MIPI VR displays.
MIPI DSISM Enables High-Performance Video

<table>
<thead>
<tr>
<th>Signal Speed</th>
<th>MIPI C-PHY<sup>SM</sup> Effective Bandwidth over 12-trios</th>
<th>MIPI D-PHY<sup>SM</sup> Effective Bandwidth over 16-DSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1GHz</td>
<td>1.2GHz</td>
<td>1.5GHz</td>
</tr>
<tr>
<td>16 Gbps</td>
<td>19.2 Gbps</td>
<td>24 Gbps</td>
</tr>
<tr>
<td>32.83 Gbps</td>
<td>41.04 Gbps</td>
<td></td>
</tr>
<tr>
<td>27.36 Gbps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical VR Resolutions

- **Combo MIPI C-PHYSM/D-PHYSM** provides system flexibility for uncompressed and compressed video support at VR specific resolutions
- Higher resolutions and frame rates can be achieved with MIPI C-PHYSM + compressed video

Notes:

- Additional blanking will result in higher bandwidth requirements; above assumes very little blanking
- 4K @ 120 resolutions cannot be supported without compression (VESA DSC) for MIPI D-PHYSM
- ANX7538/39 is the only VR HMD controller that can support uncompressed 4K2K @ 120 FPS including extended blanking for low persistence
- Higher resolutions (greater than 3K per eye) requires DSC passthrough

Achieve the optimum power & performance with MIPI Combo MIPI C-PHYSM/MIPI D-PHYSM

Analogix Semiconductor
ANX7539 is the Industry’s First VR/AR controller with VBI, Scalar, MIPI C-PHY℠ and compression
On-Chip Video Scaler Supports VR Display Resolutions

- Existing content format can leverage larger resolution VR displays with MIPI DSI™ interfaces
- Allows upscaling to larger native VR display resolutions; it prevents
 - Pillarboxing, letterboxing
 - No video in some cases

Analogix Semiconductor
Vertical Blanking Interval (VBI) Expansion

Without VBI:
- Sample-and-hold motion between frames; i.e. previous image is displayed until next frame is available

With VBI:
- Black frame insertion and strobing backlight provide an impulse image reducing the perceived motion blur

VBI helps reduce power on DisplayPort interface while maximizing MIPI DSISM bandwidth
ANX7539 Ideal for High-End VR HMD Applications

<table>
<thead>
<tr>
<th>Item #</th>
<th>Input Resolution, FPS</th>
<th>ANX7539</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left + Right Eye Views</td>
<td>On-chip VBI Expansion (% of input frame)</td>
</tr>
<tr>
<td>1</td>
<td>4800x2400 @ 90 FPS</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>3840x2160 @ 90 FPS</td>
<td>20%</td>
</tr>
<tr>
<td>3</td>
<td>4800x2400 @ 90 FPS</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>4320x2160 @ 90 FPS</td>
<td>50%</td>
</tr>
<tr>
<td>5</td>
<td>4176x2160 @ 90 FPS</td>
<td>50%</td>
</tr>
<tr>
<td>6</td>
<td>3840x2160 @ 90 FPS</td>
<td>50%</td>
</tr>
<tr>
<td>7</td>
<td>6000x3000 @ 120 FPS</td>
<td>0%</td>
</tr>
<tr>
<td>8</td>
<td>8000x4000 @ 90 FPS</td>
<td>0%</td>
</tr>
</tbody>
</table>

Analogix Semiconductor
In Summary

- MIPI DSISM interface provides the necessary feature set to enable today’s and tomorrow’s high-performance displays.
- Immersion and user experience continues to drive the performance requirements for VR HMDs.
- Intelligent VR and AR display controllers will power the next generation of HMDs.
- Analogix leads with innovative technology and products for AR/VR by leveraging and maximizing industry standards (MIPI DSISM, DisplayPort, USB-C, etc.).

Analogix Semiconductor
ADDITIONAL RESOURCES

Analogix Semiconductor
miPI DEvCON

THANK YOU

MIPI ALLIANCE DEVELOPERS CONFERENCE
19 OCTOBER 2018
SEOUL

MIPI.ORG/DEVCON