A Developer’s Guide to MIPI I3C℠ Implementation

Ken Foust, Intel
MIPI Sensor WG Chair

27 April 2017
Outline

- Introduction to MIPI I3C℠
- MIPI I3C℠ key feature descriptions
- Implementation guidelines
 - Legacy Device Support
 - HDR Modes
 - Varied Topologies
- Summarized good design practices
Welcome to MIPI I3CSM!

- An exciting new addition to the MIPI catalog
- Unifies key attributes of I²C and SPI, commonly used for Sensors
- Improves capabilities and performance
I3CSM for Ubiquitous Low Speed Interfacing

- Anywhere sensors are used, I3CSM belongs
- Aimed toward historical I²C, SPI and UART applications in...
What is MIPI I3C℠?

- Innovative new 2-Wire interface
- Key features address historical pain points
 - In-band Interrupt, Dynamic Addressing, Multi-Master, Standardized Commands, Time Control, Hot-Join, Error Detection and Recovery
 - Plus...

I²C Compatibility
Low Power
High Data Rates

Energy Consumption: mJ per mega bit for I3C data modes (100pF) vs I2C (100pF, 3.54KΩhm)

Data Rate: Mbps for I3C data modes (@12.5MHz) vs I2C (@400KHz)
Too Many I/Os!
Fragmented Interfaces!
MIPI I3C℠ Vision

- I²C Compatibility
- In-band Interrupt
- Common Command Codes
- Reduced Signal Count
- Reduced Interface Power
MIPI I3C℠ Features

- **I3C SDR – The Base Interface**
 - Up to 12.5 MHz I²C-like clocking with defined Open-Drain / Push-Pull
 - Supports multiple classes of Devices
 - I3C Main Master
 - SDR-only Main Master
 - I3C Secondary Master
 - SDR-Only Secondary Master
 - I3C Slave
 - SDR-Only Slave
 - I²C slave
MIPI I3C™ Features

- **SDR Dynamic Address Assignment**
 - Standardized procedure for dynamic assignment of 7-bit Addresses to all I3C Devices
 - I3C Slaves have two standardized characteristics registers and an internal 48-bit Provisional ID to aide the procedure
 - Legacy I²C Devices still use their static I²C Address

- **SDR In-band Interrupt**
 - Slave device can issue START Request when in “Bus Available” state
 - Master provides Interface Clock for Slave to drive it’s Master-assigned address onto the bus
 - Lowest assigned address wins arbitration in Open-Drain configuration
 - A data payload (i.e. Mandatory Data Byte) can immediately accompany the In-band Interrupt
MIPI I3C Features

- **Error Detection and Recovery Methodology**
 - For Master and Slave generated errors (9 Error Types identified, Parity, CRC5)

- **Common Command Codes**
 - Standardized command mode with extensible set of MIPI-defined codes that can be Broadcasted and/or Directed, Read and/or Write

<table>
<thead>
<tr>
<th>S or Sr</th>
<th>0x7E / W / ACK</th>
<th>Command Code</th>
<th>Data (Optional) (Broadcast CCC only)</th>
<th>Sr or P</th>
</tr>
</thead>
</table>

 - Standardized Command Codes
 - Event Enable/Disable
 - Activity States
 - Payload Mgmt
 - I3C Feature Mgmt (Dynamic Address Assignment, Mastership, HDR Modes, Timing Control)
 - Test Modes
 - Extensible Space (MIPI and Vendor)

* Example of Broadcast CCC Frame
Guidelines - Legacy I²C Device Support

- Fm and Fm+ Speeds Supported
- 50ns Spike Filter (t_{SP}) Needed for 12.5MHz I3CSM Clocking

t_{SP}: pulse width of spikes that must be suppressed by the input filter

- Clock Stretching is Not Allowed – I3C SCL is Push/Pull
- 20mA Open Drain Drivers (I_{OL}) are Not Used
- I²C Extended Addresses (10 bit) are Not Used
MIPI I3C℠ Features

- **I3C High Data Rate (HDR) Modes**
 - Optionally supported beyond the base SDR mode: 12.5MHz, SDA/SCL
 - HDR-DDR: Double Data Rate
 - HDR-TSL/TSP: Ternary Symbol
 - Offer bit rates over 33Mbps at a fraction of the per bit power of I²C Fast Mode
 - Simple Slave-side digital implementations
 - Coexistent with legacy I²C Devices
 - Leverage rising and falling edges
 - Individually entered using broadcasted MIPI-defined Common Command Codes
 - Universally exited and restarted via MIPI-defined toggling patterns
 - Allows non-HDR I3C Devices to “ignore” HDR transmissions

<table>
<thead>
<tr>
<th>I3C</th>
<th>Msg1</th>
<th>Msg2</th>
<th>I3C</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td>Brdcst CCC</td>
<td>EnterHDRx</td>
<td>HDR Restart Pattern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HDR Cmd</td>
<td>HDR Data</td>
</tr>
</tbody>
</table>

Diagram:
- **HDR Exit**
 - Setup (SDA/SCL) (If Needed)
 - Next Edge Confirms
- **HDR Restart**
 - SDA Restart
 - Setup (SDA/SCL) (If Needed)
 - Possible Restart
MIPI I3C™ Features

- **HDR-DDR: Double Data Rate**
 - Uses SCL as a clock, however Data and Commands change SDA on both SCL edges. By contrast, SDR Mode changes SDA only when SCL is Low.
 - HDR-DDR moves data by Words, which generally contains 2 preamble bits, 2 payload bytes and 2 parity bits. 4 Word Types are defined: Command Word, User Data, CRC Word, and Reserved Word.

- **Simple protocol:**

![Diagram showing SDA and SCL signals with P1, P0, D0.7, D0.6, D0.5, D0.4, D0.3, D0.2, D0.1, D0.0, D1.7, D1.6, D1.5, D1.4, D1.3, D1.2, D1.1, D1.0, P1, P0 notations.]

 - Preamble Bits: Define the subsequent Word Types.
 - Command, Data, or CRC: Based on Preamble (8bit MSB).
 - Parity Bits: P1: Odd Parity bit, P0: Even Parity bit.

Note: From Master to Slave: ACK = Acknowledge (SDA Low), NACK = Not Acknowledge (NACK), S = START Condition, Sr = START/Condition, P = STOP Condition, T = Transition Bit Alternative to ACK/NACK.
MIPI I3CSM Features

- **HDR-TSL/TSP: Ternary Symbol Coding**
 - Ternary symbol coding for pure (TSP) and I2C legacy-inclusive (TSL) systems
 - Given a two-wire interface with ‘simultaneous’ transitions and no traditional clock, there are 3 possible symbols available – 0, 1, 2
 - At least one line must transition each period
 - Ideally, there are 3 possible “next” transition
 - Transition indices are used to efficiently encode Binary into Ternary
 - Simple protocol:

<table>
<thead>
<tr>
<th>I3C SDR</th>
<th>Msg1</th>
<th></th>
<th>Msg2</th>
<th></th>
<th>I3C</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td>Brdct CCC</td>
<td>EnterHDRx</td>
<td>HDR Cmd</td>
<td>HDR Data</td>
<td>HDR Restart Pattern</td>
</tr>
</tbody>
</table>

\[\text{SDA}\]

\[\text{SCL}\]

\[\text{HDR-TSL/TSP}\]

\[\text{I}\text{2C and I3C SDR}\]

\[\text{data line stable; data valid}\]

\[\text{change of data allowed}\]
Guidelines - HDR Modes

• Enter HDR Commands Supported

<table>
<thead>
<tr>
<th>I3C</th>
<th>Msg1</th>
<th>Msg2</th>
<th>I3C</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td>BrdCst CCC</td>
<td>HDR Cmd</td>
<td>HDR Data</td>
</tr>
<tr>
<td></td>
<td>HDR Restart</td>
<td>Pattern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HDR Exit Pattern</td>
<td></td>
<td>STOP</td>
</tr>
</tbody>
</table>

• HDR Exit Pattern detected by all I3C Devices

• Non-HDR Devices shall ignore I3C HDR bus traffic until the HDR Exit Pattern is detected
Guidelines - Varied Topologies

- Impacts on signal transition/transit times (maximum bus frequency)
 - SDA/SCL drive strength: “weaker” for lower power and interference vs “stronger” for faster over larger topologies/loads
 - Trace length and material: short vs long and pcb vs cable
 - SCL/SDA pad capacitance
 - Clock to Data Turnaround Time (t_{SCO})
- Legacy I²C Devices impact maximum bus frequency (MHz)
 - Must run I3C at speeds/pulses beyond Spike Filter or slow Bus to that of slowest I²C Device
- Impacts on signal integrity/reliability
 - Device Location: close and far Devices can cause interference from reflections
Summarized Good Design Practices

• Thoroughly understand capability of coexistent Legacy I²C Devices
 – 50ns Spike Filter
 – Disabled Clock Stretch

• Understand bus topology and performance tradeoffs Mixed (I3C and Legacy I²C Devices) vs Pure Bus (I3C Devices Only)
 – Trace length and material
 – SDA/SCL pad capacitance
 – Clock to Data Turnaround Time (t_{SCO})
 – Device location
Any Questions?