Azusena Lupercio
Juan Orozco
Nestor Hernandez
Intel Corporation

I3C® Signal Integrity Challenges on DDR5 Based Server Platform Solutions
Agenda

• Introduction
• DDR5 SPD server connectivity and bus characteristics
• I2C and MIPI I3C Retro-compatibility challenges
 – Non-dynamic pullup impact
 – Dynamic pullup on open-drain
• Buffer R_{ON} design implications
• Critical time margin calculation
 – Frequency and AC/DC parameters impact
• Non-monotonic signal behavior
• Slope reversal capability and timing improvement
• Summary
Introduction
Introduction

• The MIPI I3C Improved Inter-Integrated Circuit interface is first introduced in a server application for the DDR5 DIMM Serial Presence Detect (SPD) function.

• Its implementation exceeds by far the bus capacitance/loading specification, which was defined for low capacitance Mobile/IoT applications.

• This presentation covers the interoperability challenges of the dynamic push-pull and open-drain operating modes on I3C BASIC server applications.
 – Covering an in-depth analysis of the implications of long PCB traces, multiple DIMM routing branches, several loads, to the electrical and timing parameters.
Introduction cont'd

• I3C Communication Bus specification was released by MIPI Alliance in 2016, as an improved communication protocol compared to its predecessor I2C, but the implementation of I3C, in a Data Center (Server) application was materialized until 2020.

• The main enhancements in I3C adopted by the DDR SPD function are:
 – Higher bit rate: up to 12.5MHz, compared to 100KHz-1MHz I2C SPD in prior DDR generations (125x to 12.5x higher bit rate).
 – Better IO electrical interface: Push-pull driver vs Open Drain only.
 – In-band interrupts (IBI) support – Not supported in DDR5 now, but looking for support in the future (or in other Server use cases).
 – In band Common Command Codes (CCCs) – Direct or Broadcast.
 – Reduced interface power (1.0V IOs).
Introduction cont'd

- The DDR5 SPD interface transitioned from I2C to MIPI I3C based on the following requirements for the next generation DDR DIMM technology:
 - Lower IO operating Voltage (as low as 1V aligned to advanced process node)
 - DDR4 SPD IO voltage was 2.5V
 - Higher interface bit rate (400KHz to 8-12.5MHz in real applications) due to the increased number of devices per DIMM to be managed
 - DDR4 had two devices per DIMM vs five devices in DDR5
 - Considering 8 DIMMs per SPD segment, this is 16 vs 40 devices
 - Higher bit rate to reduce boot time (diminishing Memory Reference code execution time)
DDR5 SPD Server connectivity and bus characteristics
DDR4 vs DDR5 SPD DIMM Connectivity

- **DDR4 SPD**

 - I2C Platform Controller (CPU or BMC)
 - Level Shifter
 - I2C Platform Interface (2.5V)
 - SPD Memory and Temp Sensor (TS)
 - Registering Clock Driver (RCD)

- **DDR5 SPD**

 - I3C Platform Controller (CPU or BMC)
 - I3C Platform Interface (1.0V)
 - Host Side Interface
 - Local Side Interface
 - SPD I3C Hub and Memory
 - Registering Clock Driver (RCD)
 - Power Management IC (PMIC)
 - Temperature Sensor #1 (TS1)
 - Temperature Sensor #2 (TS2)

Provides isolation and transparent communication from the Host to the Local devices (5pf per device)
DDR4 vs DDR5 SPD DIMM Connectivity

- **DDR4 SPD**

- **DDR5 SPD**

Introduces a time delay (12ns round trip) between Host and Local Devices
DDR5 SPD Bus Characteristics
DDR5 SPD Platform Connectivity

- Host side Server PCB routing
 - Total length could exceed 50”
 - Server motherboards are BIG: up to 16”x 19”
 - BMC controller is located at the North side
 - DIMMs are located at the South side
 - CPU to DIMM SPD routing has lower priority than high speed IO routing (DDR5, PCIe G4/G5, etc.)
Routing length and capacitance

- **Host side Server PCB routing**
 - From Controller to DIMMs ($L_{11}+L_{12}+L_{2x}$): ~25”
 - DIMM routing (L_{DIMM}): 3.5”/DIMM, 28” 8x DIMMs
 - Total PCB trace length: ~53”

- **Host side Total Capacitance**
 - Each device apports 5pF
 - 1 CPU + 8 HUBs = 45pF
 - PCB routing is ~3pF/in
 - 53” * 3pF = ~159pF
 - Totaling:
 - Dev (45pF) + PCB (53pF) = ~204pF
I2C and MIPI I3C Retro-compatibility Challenges
I2C and MIPI I3C Retro-compatibility Challenges

• There are three operating modes supported by the I3C protocol:
 – I2C mode with Open-Drain (OD) buffer class.
 – I3C mode with Open-Drain buffer class.
 – I3C mode with Push-Pull (PP) buffer class.

• The OD class requires a pullup to set a stable “Logic-high”.
 • The pullup is set accordingly with the total capacitance on the bus.
 • High capacitance busses requires a “Strong pullup”
 – Strong pullup guarantees rise time specification to pass.

• The PP class requires a High-Keeper pullup.
 – A “Weak pullup” is required to the target device with low current can pull SDA signal low within a minimum low period.
 – Weak pull-up lessens the voltage levels disturbances

MIPI I3C Basic Spec requires Dynamic pull-up control to switch between “strong pull-up” and “weak pull-up” to optimize open-drain and push-pull timing requirements.
Non-Dynamic Pullup impact in a 204pF bus

Push-Pull

⇒ The Highest the PU–VIH never reached with pull-up higher than 800Ω
- Limit max operating frequency

Open-Drain

• On-Board PU can guarantee an OD max operating frequency.
 - A parallel equivalent $R_{PU_{HK}} \parallel R_{PU_{OD}}$ of 333.3Ω
 - Rise time=75.3ns
 - A pullup ≥ 550Ω negatively affects both rise time and operating frequency

A trade-off among pull-up value, rise time and V_{OL} is required to meet the highest operating frequency
Buffer R_{ON} design implications
Buffer R_{ON} value design implications

- The bigger the R_{ON} the higher the V_{OL} is:
 - Increasing trace length results in higher V_{OL}
 - With the longest trace length, $V_{OL}=192\text{mV}$,
 - Assuming $V_{IL}=0.3\text{V}$ then the transition margin is 108mV
 » Low transition margin can cause idle states

- Setting the R_{ON} at 40Ω reduces the V_{OL}
 - With the longest trace length $V_{OL}=146\text{mV}$,
 - If $V_{IL}=0.3\text{V}$ then the transition margin is 154mV
 - Notice that at the longest trace length with $V_{OL}=146\text{mV}$ the I_{OL} is 3.66mA

By limiting R_{ON} into a max range of 40Ω ensures a healthy V_{OL} by setting a max I_{OL} bigger than 3mA
Critical time margin calculation
Critical time margin calculation

TARGET driving to PRIMARY: Setup margin

\[
T_{su_mar} = t_{LOW} - (T_{fit_CLK_PRIMARY\rightarrow\text{HUB}}^{\text{fall}} + T_{pd_CLK_HUB} + T_{fit_CLK_HUB\rightarrow\text{TARGET}}^{\text{fall}} + T_{co_DATA_TARGET} + T_{fit_DATA_HUB\rightarrow\text{TARGET}}^{\text{rise}} + T_{pd_DATA_HUB} + T_{fit_DATA_HUB\rightarrow\text{PRIMARY}}^{\text{rise}} - T_{su_\text{PRIMARY}_\text{max}})
\]
Critical time margin calculation

<table>
<thead>
<tr>
<th>Frequency</th>
<th>10 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty cycle</td>
<td>35 %</td>
<td>40 %</td>
</tr>
<tr>
<td>tLOW</td>
<td>65 ns</td>
<td>70 ns</td>
</tr>
<tr>
<td>tflt_CLK_PRIMARY-HUB_fall</td>
<td>19.1 ns</td>
<td>20.5 ns</td>
</tr>
<tr>
<td>tpd_CLK_HUB</td>
<td>6 ns</td>
<td>7 ns</td>
</tr>
<tr>
<td>tflt_CLK_HUB-TARGET_fall</td>
<td>4.7 ns</td>
<td>5.2 ns</td>
</tr>
<tr>
<td>tco_DATA_TARGET</td>
<td>12 ns</td>
<td>14 ns</td>
</tr>
<tr>
<td>tflt_DATA_TARGET-HUB_rise</td>
<td>1.972 ns</td>
<td>2.1 ns</td>
</tr>
<tr>
<td>tpd_DATA_HUB</td>
<td>6 ns</td>
<td>7 ns</td>
</tr>
<tr>
<td>tflt_DATA_HUB-PRIMARY_rise</td>
<td>9.8 ns</td>
<td>10.5 ns</td>
</tr>
<tr>
<td>tsu_PRIMARY_max</td>
<td>3 ns</td>
<td>4 ns</td>
</tr>
</tbody>
</table>

Setup Margin: 2.253 ns

- The longer trace length the biggest flight time
- Inner device propagation delay plays a significant role in defining the operating frequency.
 - The highest the Tpd the bigger the time margin reduction.
- Increasing tLOW provides extra timing margin.
Frequency and AC/DC parameters impact

- Increasing duty cycle reduces t\text{LOW}, thus reducing the Time Margin.
- When reducing the Duty Cycle the t\text{HIGH} and t\text{DIG_HIGH} are affected.
 - Small Duty Cycle can produce a NOT PASS on t\text{HIGH}/t\text{DIG_HIGH}.

A correct selection of Duty Cycle provides extra time margin to complete the setup transaction, granting higher operating frequency.

From MIPI I3C Spec $t_{\text{HIGH}} \text{ min} 24\text{ns}$, $t_{\text{DIG_HIGH}} \text{ min} 32\text{ns}$
Non-monotonic signal behavior
Non-monotonic signal behavior

- Termination effect on transmission lines
 - **Non-terminated circuit:**
 - Signal bounces back and forth between the driver and the receiver.
 - **Tx-terminated circuit:**
 - Reduces drive strength
 - Increases propagation delay
 - Limits buffer capabilities
 - **Rx-terminated circuit:**
 - Reduces bouncing effect
 - Increases propagation delay
Slope reversal capability and timing improvement
Slope reversal capability and timing improvement

- With the non-deterministic loading of an unterminated bus, there can be reflections on the bus causing slope reversal on the Rx signal.
- By sampling at the first threshold is possible to filter Non-Monotonicity's; Schmidt triggered inputs
 - Non-terminated VS Rx-Terminated: **Improves 2.3ns**
 - Non-terminated VS Tx-Terminated: **Improves 3.92ns**

Slope reversal capability provides additional time margin that improves operating frequency and prevent false logic states.
Summary
Summary

• I3C Applications in Server systems (such as DDR5 SPD) are dealing with higher Bus capacitance than the max limit assumptions in MIPI spec (for 12.5MHz capable buses).

• Higher Bus capacitance applications can be mitigated by using good Buffer Drive strength, strong open-drain class pull-up, and HUB isolation circuits.

• A dynamic pullup operation allows to drive the interoperability challenges between the open-drain and push-pull operating modes; by enabling higher operating frequencies on both modes and limiting critical parameters to meet latest specification.

• Strong buffers tend to increase signal energy reflections, specially in complex topologies resulting with slope reversal conditions at Devices' Inputs.

• Schmitt trigger capable inputs are required in order to mitigate slope reversal conditions when dealing with high bus capacitance and strong buffers.
THANK YOU!

MIPI ALLIANCE DEVELOPERS CONFERENCE

28-29 SEPTEMBER 2021