ADAS High Bandwidth Imaging Implementation Strategies

Mayank Mangla, ADAS Imaging Architect
Shiou Mei Huang, Automotive Applications
Texas Instruments
Automotive Imaging Applications

- SV/Park Assist
- Radar/Lidar
- Front Cam
- Smart Rear Cam
- DMS
- Fusion
- CMS

Compiled with Google Search Images
Challenges

- **High Bandwidth Requirements**
 - Faster frame rate
 - Higher sensor resolution
 - High dynamic range (multiple exposures per pixel)

- **Multi-Camera Systems**
 - Numerous image/video formats
 - Single processor to process video inputs from all cameras
 - Need to distinguish amongst video streams
 - Multi-modal fusion

- **SoC Design Constraints**
 - Package: Minimal pin count
 - Routing: Signal integrity
 - Lower cable usage

- **Automotive Quality & Safety**
 - Need to maintain signal integrity for interface distance > 20 ft
Example Solutions

- **FPD Link Deserializer**
 - Quad hub chip
 - Each camera connected through FPD-Link cable
 - VC tag for individual camera streams
 - Mux 4 cameras into a single CSI-2℠ stream

- **Vision Processor**
 - Rx module fully compliant with MIPI CSI-2℠ spec 1.0
 - Future: 32 Virtual Channels
 - Up to 6.0 Gbps throughput
 - HW support to parse CSI-2℠ streams
 - High speed, multi channel image processor
 - Vision accelerators: HW IPs + Programmable Core

www.ti.com/ADAS
Why MIPI CSI-2℠ in Automotive

- Low power
- High speed transfers
- Low pin count
 - Flexibility in choosing 1/2/3/4 lane(s)
- Standardized vs Proprietary protocols
 - Easy to interface a wide range of transmitters and receivers
- Virtual channels
 - Allows connections of multiple devices to the same bus

- Error detection and recovery
 - Sync codes
 - ECC codes
 - 16-bits CRC Checksum

- Safety
 - Safety related meta-data along with pixel data
MIPI CSI-2℠ Lane Scalability

In high bandwidth scenarios, CSI-2℠ can be configured to split byte stream into 1/2/3/4 data lanes.

On Tx side the stream is distributed across multiple lanes. On Rx side incoming packets are merged into a single stream.

Each lane operates independently, including SoT frame, Start Packet code and End Packet code.

www.ti.com/ADAS
Virtual Channels and Data Types

- Each CSI-2℠ packet has a “Data Identifier” field, which specifies the payload Data Type (DT) and Virtual Channel (VC) number it carries.

- Different data types from different sources can be merged into a single stream.

- CSI-2℠ Rx uses DT and VC fields to distinguish amongst different packets and process them accordingly.

- Examples:
 - Pixel data vs embedded data
 - Data from different cameras multiplexed into a single CSI-2℠ stream
 - Multi-exposure WDR where L/M/S pixels are coming in a single stream.
Example – Surround View

- 4x Full HD Cameras – Throughput requirement > 3 Gbps
- Each camera sends a high resolution RAW stream at a high frame rate
- Surround View Application (SRV)
 - 4:1 Deserializer Hub (DS90UB96x)
 - Synchronizes video inputs across multiple cameras
 - Aggregates camera streams from four sides of the vehicle
 - Tags each camera stream with unique VC and meta data
 - Multiplexes into a single stream
 - Sends over CSI-2℠ interface to the host processor

Host Processor (TDAx)
- Receives the incoming stream
- Parses each packet, identifies the camera stream based on VC
- Obtains 4 independent video stream in separate buffer queues
- Applies complex SRV image processing algorithms

www.ti.com/ADAS
Example – Surround View

What is Surround View?

Description:
- 360 degree Bird’s Eye View using multiple cameras

Key Care Abouts for Surround View:
- **Safety**
 - Gives more visibility around the vehicle
- **Convenience**
 - Enables features such as park assist
- **Autonomy**
 - Enables autonomous functions like self parking

What are the options for Surround View?

Surround View Configurations:
- **4 Cameras**
 - 2D
 - 3D

ADAS Features
- Park Assist
- Self Parking
- Obstacle Detection

Variations:
- Additional Cameras
 - Hitch
 - Truck Bed

www.ti.com/ADAS
Surround View Configuration

LVDS

SoC care-about:
- ISP – Image Processing on SoC
- Graphics
- Analytics

CMOS Sensor
ISP – optional (not needed for TI)
FPD Link Tx

RAW or YUV video
Transmit over LVDS (FPD Link)

Send to display or Compress and send to ECU

Display

www.ti.com/ADAS
Surround View Solution

Challenges
- High Data Rate – Up to 3 Gbps
- High Pin Count – To support multiple cameras
- Long Channel Length – Cameras located far away from the processor
- Sync – All cameras must be synchronized to eliminate motion artifacts

MIPI CSI-2℠ to the rescue
- 4-lane interface for High Speed Data Transfer
- Support for Virtual Channels and Data Types
 - Allows multiple camera streams to be muxed into a single CSI-2℠ stream
 - Processor can identify a CSI-2℠ packet using VC and DT info
- CSI-2℠ enabled SerDes chips allow long channel length over FPD Link
 - Act as 4-camera hub
 - Implements sync across all cameras

www.ti.com/ADAS
Example – Multi-Modal Fusion

- **Passive Sensor**
 Camera
- **Active Sensor**
 Radar, Lidar, Ultrasound
- **Infrastructure**
 High-precision Map
 V2X Communication

- **Mid and Long Range**
 Adaptive Cruise Control,
 Emergency braking, Fully/Highly Autonomous Driving

- **Short Range and Ultra Short Range**
 Blind Spot, Collision Avoidance, Lane Change Assist, Pedestrian Detection, Park Assist

- **Proximity Sensors**
 Occupant Detection, Gesture Recognition, Driver Monitoring

- Lighting
- Rain
- Night
- Snow
- Fog/Smog
- Dirt

© 2017 MIPI Alliance, Inc.
Challenges

- High Data Rate – 1 Gbps/Camera + 2.4Gbps/Radar
- High PIN Count – To support large number of devices
- Imaging Format Variations – Need a standard protocol for imaging and non imaging devices

MIPI CSI-2℠ to the rescue

- 4-Lane interface for High Speed Data Transfer.
- Ability to MUX Camera/Radar/LIDAR
- Processor can identify the source using VC and DT
- CSI-2 specification easily extends to non imaging devices like Radar.
 - No design change needed at the processor Rx interface
 - Serializer and Deserializer chips for FPD link transmission can process Radar stream exactly like camera.

www.ti.com/ADAS
Fusion – SLAM (Simultaneous Localization and Mapping)

- 6x-10x Cameras
- 6x-10x Radar
- 1x-4x LIDARs
- 8x-12x Ultrasonic
- Thermal/IR

Sensor Processing → Perception

IMU GPS Maps

FUSION
- Sensor Fusion
- Localization
- Mapping

PLANNING AND CONTROL
- Path planning
- Motion planning
- Vehicle controls
 - Acceleration
 - Brake
 - Steering

FEEDBACK TO DRIVER
- Visualization/Display
- Warnings

Driver monitoring

www.ti.com/ADAS
Summary

MIPI CSI-2℠ is gaining popularity in Automotive industry because of the following benefits

• **High Bandwidth**: Total 6.0 Gbps. Allows 4x 1080p cameras on a single Processor
• **Low pin count**: Scalable from 6 - 12
• **Multi Camera/Multi Modal Architecture**: Efficient use of Virtual Channel and Data Types
• **Quality**: SerDes solutions converts image signal from digital to analog form. FPD link cable transports analog signal over long distance without degradation
• **Safety**: TDAxx processors has advanced capability for error detection, recovery, and embed safety data along with pixel data
• **Future**: 32 virtual channels

With more Image sensors, Radar and other devices adopting CSI-2℠, the trend is expected to continue and gain momentum in the years to come.

www.ti.com/ADAS