How MASS Simplifies the Integration of Camera and Displays in Automotive Architectures

Ariel Lasry
Vice Chair, MIPI A-PHY Working Group

Hiroo Takahashi
Lead, MIPI Camera Service Extensions Subgroup

James Goel
Vice Chair, MIPI Display Working Group
Agenda

• MIPI Automotive SerDes Solutions (MASS) Overview
• MASS for Camera and Sensors
• MASS for Display
• Summary
• Q&A
MIPI Automotive SerDes Solutions
Overview

Ariel Lasry
Vice Chair, MIPI A-PHY Working Group
MIPI A-PHY Overview

Today: Proprietary Interface Bridge Solutions

- CSI-2 Front Camera
- CSI-2 Side Camera
- CSI-2 Rear Camera

Tomorrow: A-PHY Standard Interface Bridge Solutions

- D-PHY/C-PHY & PCIe
- Bridge
- Standard A-PHY SerDes
- Bridge
- D-PHY/C-PHY & PCIe

Future: Integrated A-PHY

Lower cost through standardization and economies of scale

Lower cost/eBOM through integration

ECU: Electronic Control Unit SoC: System On Chip

© 2021 MIPI Alliance, Inc.
MIPI A-PHY – Automotive Long-Reach PHY

The first industry-standard *long-reach* asymmetric SerDes physical layer specification targeted for ADAS/ADS surround sensor applications and infotainment display applications.

NEW A-PHY v1.1 Enhancements:
- Increased support for lower cost legacy cables
- Double uplink data rate
- Star quad cable support, enabling dual downlink operation

A-PHY v1.0 offers:
- Direct coupling to native CSI-2/DSI-2/DP-eDP protocols
- High performance of up to 16 Gbps over 10-15m
- High noise immunity, ultra low PER (< 10^{-19})
- Supports bridge-based and endpoint integration
- Support for automotive coax and STP channels
- Power over cable
- Built-in Functional Safety according to ISO26262

Examples:
- Source: Sensor CSI-2
- Sink: SoC CSI-2
- Coax, STP or SPP Cable
- Examples: SoC DSI-2
- Display DSI-2
- Display DP
- Examples: SoC VESA DP
- Sensor CSI-2
- Display DSI-2
- Display DP

PER: Packet Error Rate
STP: Shielded Twisted Pair
SPP: Shielded Parallel Pair
ADAS: Advanced Driver Assistance System
ADS: Autonomous Driving System
SoC: System On Chip

© 2021 MIPI Alliance, Inc.
MIPI A-PHY Activity

A-PHY v1.0 adopted as IEEE 2977-2021 (June 2021)

WHAT'S NEXT:
A-PHY v1.1 development complete and will also be submitted to IEEE adoption process
MIPI Automotive SerDes Solutions (MASS) in the Car

Electronic Control Unit (ECU)
- Advanced driver assistance system (ADAS) based on sensor feeds
- Produces display feeds

Sensors
- Camera
- Lidar

Displays
- Dashboard
- Console
- Side view mirrors
- Entertainment

(Optional) A-PHY Bridges
- Translates between short-range MIPI C-PHY / D-PHY & long-range MIPI A-PHY
MASS – Guiding Principles

A collection of MIPI specifications advancing camera and display solutions for automotive:

- **A-PHY**
 - Long reach PHY (15m)
 - v1.0: 2-16 Gbps (Coax, SDP)
 - v1.1: up to 32Gbps (STQ)

- **PAL: Protocol Adaptation Layers**
 - MIPI CSI-2, DSI-2 and I3C
 - VESA eDP/DP
 - Ethernet, I2C, GPIO

- **Service Extensions for End-to-End FuSa and Security**
 - CSE: Camera Service Extensions
 - DSE: Display Service Extensions
 - MIPI Security Specification

- **PHY-level**
 - Retransmission (RTS)
 - Advanced modulation (PAM-4,8,16)

- **Economies of scale**
- Reduced NRE/cost
- Backward Compatibility

- **Camera/sensor to ECU**
- ECU to display
- Bridged and Integrated
MASS – Solution Elements
Comprising PHY, Protocols and Extent for a flexible system solution

Robust Long-Reach PHY (PER 10^{-19})
- MTBF of 1 error over the full vehicle life-time
- Asymmetric high-speed link with fixed low latency ~6µs @G5
- High speed downlink and aggregation to support multiple 4K cameras and displays

Application-level End-to-End Functional Safety
- End to end protection covering various topologies
- Flexible coverage: per frame, per ROI, per message, compression ON/OFF
- CRC for error detection
- Frame loss detection
- Time-out Monitoring
- BIST
- Faults injection

Application-level End-to-End Security
- Authentication
- Data integrity
- Encryption
- HDCP for display

Deep system level consideration for native interfaces and the legacy ecosystem
- Heterogeneous display protocols:
 - DSI-2, eDP/DP
 - Different source/sink configs
 - C-PHY, D-PHY, # Lanes, I2C, I3C
 - Integrated A-PHY or bridged A-PHY

PER: Packet Error Rate
ROI: Region Of Interest
MTBF: Mean-Time Between Failure
MASS – Examples for Supported Topologies

Cameras and Sensors Aggregation

- MIPI CSI-2 Sensors
- Multi-port A-PHY RX SerDes with CSI-2 Aggregator
- End-to-End Protection

Daisy Chaining of Heterogeneous Displays

- MIPI DSI-2 + VESA eDP over A-PHY
- DID: Driver Instrument Display
- CID: Central Information Display
- CDD: Co-Driver Display
- End-to-End Protection
MASS Stack – Current Status

<table>
<thead>
<tr>
<th>Applications</th>
<th>Camera / Lidar / Radar</th>
<th>MIPI Display</th>
<th>VESA Display</th>
<th>Supporting Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPI Protocol Layers</td>
<td>MIPI CCS ✔</td>
<td>MIPI DCS ✔</td>
<td>Display Service Extensions</td>
<td>Ethernet ✔</td>
</tr>
<tr>
<td>MIPI Functional Safety and Security</td>
<td>Camera Service Extensions ✔</td>
<td>Display Service Extensions ✔</td>
<td></td>
<td>GPIO ✔</td>
</tr>
<tr>
<td></td>
<td>Functional Safety ✔</td>
<td>Functional Safety ✔</td>
<td></td>
<td>MIPI I3C ✔</td>
</tr>
<tr>
<td></td>
<td>Security ✔</td>
<td>Security ✔</td>
<td></td>
<td>I2C ✔</td>
</tr>
<tr>
<td></td>
<td>MIPI CSI-2 ✔</td>
<td>MIPI DSI-2 ✔</td>
<td></td>
<td>SPI ✗</td>
</tr>
<tr>
<td>Protocol Adaptation Layer (PAL)</td>
<td>MIPI PAL/CSI-2 ✔</td>
<td>MIPI PAL/DSI-2 ✔</td>
<td>VESA eDP / DP ✔</td>
<td>Other MIPI PALs</td>
</tr>
<tr>
<td>Link Layer</td>
<td>MIPI PAL/eDP-DP ✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Layer</td>
<td>MIPI A-PHY Data Link Layer ✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIPI A-PHY SerDes Physical Layer ✔</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Specification published
- Completed – in adoption process
- Work in progress
MASS 1-5 Model & MIPI Protocols
End-to-End Functional Safety and Security Protection

Bridge to Bridge Protection

End to End Protection

Target (Peripheral) (SNS or Display TCON / DDIC)
MASS 1-5 Model & MIPI Protocols
End-to-End Functional Safety and Security Protection

- **Bridge to Bridge Protection**
 - In-band protection with SEP (CSI-2, DSI-2, DP, eDP)
 - Side-band protection with ESS-CCI (CCI, A-PHY Control)

- **Controller (SoC)**
 - Data Plane Messages (in-band)
 - Control Plane Messages (in-band or sideband)

- **C.Bridge (Opt)**
 - Display

- **A-PHY Forwarding Element (Opt)**

- **T.Bridge (Opt)**
 - Display

- **Target (Peripheral)**
 - (SNS or Display TCON/DDIC)
MASS for Camera and Sensors

Hiroo Takahashi
Lead, MIPI Camera Service Extensions Subgroup
Introduction of CSE

CSE enhances CSI-2 with End-to-End (E2E) Functional Safety and other features

- Camera Service Extensions (CSE)
 - CSE adds some extended features to CSI-2 for next-generation image sensor applications.

- Key features
 - E2E Functional Safety
 - CSE_i (Image Data Transfer)
 - Service Extension Packet (SEP) provides packetization and uniform delivery of image data.
 - CSE_c (Control Data Transfer)
 - Enhanced Safety and Security Camera Control Interface (ESS CCI) extends the CCI defined in CSI-2.
 - Extended Data Type (eDT)
 - Expands the number of Data Type (DT) to 256.
 - Extended Virtual Channel (eVC)
 - Expands the number of Virtual Channel (VC) to 64.

- Future enhancements
 - E2E Security (CSE ver2.0)
System Overview

There are 3 types of Image Sensor and SoC.

- **Integrated Image Sensor/SoC**
 - A-PHY is implemented in the Image Sensor/SoC.
 - Image Sensor #1, SoC #2

- **Non-Integrated Image Sensor/SoC**
 - A-PHY is not implemented in the Image Sensor/SoC, but CSE is implemented in the device.
 - Image Sensor #2, SoC #1

- **Legacy CSI-2 Image Sensor/SoC**
 - Neither A-PHY nor CSE is implemented in the Image Sensor/SoC.
 - Image Sensor #3, SoC #3

CSE_i: Camera Service Extension for image data transfer
CSE_c: Camera Service Extension for control data transfer
CSI-2 LLP: Low Level Protocol defined in CSI-2
CSI-2 LM: Lane Management layer defined in CSI-2

CSIA-SRC: CSI-2 Source adaptation layer defined in PAL/CSI-2
CSIA-SNK: CSI-2 Sink adaptation layer defined in PAL/CSI-2
ICAM: I2C Adaptation layer for I2C Master defined in PAL/I2C
ICAS: I2C Adaptation layer for I2C Slave defined in PAL/I2C
CSE provides E2E protection mechanisms

Integrated Image Sensor/SoC
- **Image Data (CSE_i)**
 - Image data E2E Safety can be supported between the CSE_i in the Image Sensor and the CSE_i in the SoC if the SEP-DT is used
- **Control Data (CSE_c)**
 - Control data E2E Safety can be supported between the CSE_c in the SoC and the CSE_c in the Image Sensor if the ESS CCI is used

Non-Integrated Image Sensor/SoC
- **Image Data (CSE_i)**
 - Image data E2E Safety can be supported between the CSE_i in the Image Sensor and the CSE_i in the SoC if SEP-DT over C/D-PHY is used
- **Control Data (CSE_c)**
 - Control data E2E Safety can be supported between the CSE_c in the SoC and the CSE_c in the Image Sensor if the ESS CCI is used

Legacy CSI-2 Image Sensor/SoC
- **Image Data (CSE_i)**
 - Image data E2E Safety can be supported between the CSA-SRC in the Serializer and the CSA-SNK in the Deserializer if the Legacy Mode conversion defined in PAL/CSI-2 is used
- **Control Data (CSE_c)**
 - Control data E2E Safety can be supported between the ICAM in the Deserializer and the ICAS in the Serializer if the ESS CCI is used
CSE_i (CSE for Image Data)

CSE_i provides 3 SEP-DT packets for each PHY based on an SEP format

- **Packet structure for CSE_i**
 - SEP-DT packet over A-PHY
 - SEP-DT packet over D-PHY
 - SEP-DT packet over C-PHY

- **SEP format**
 - Each SEP-DT packet uses Service Extensions Packet (SEP) format.
 - CRC-32
 - Message Counter (MC)
 - An SEP shall consist of three parts:
 - extended Packet Header (ePH)
 - The ePH0 and ePH1 are mandatory
 - The other ePHs are optional (controlled by ePHEN in ePH0)
 - Payload Data
 - Length = Payload Length (PL) * Data Word Width (8-bits)
 - extended Packet Footer (ePF)
 - The ePF0 and ePF1 are optional (controlled by ePFEN in ePH0)
SEP-DT packet over A-PHY has the same format as SEP

SEP-DT packet over A-PHY

CRC-32 for E2E protection (consumed by CSE_i)

Message Counter for E2E

CRC-32 for B2B protection (consumed by A-PHY)
Example of E2E Functional Safety for CSE_i

E2E protection can be supported regardless of the type of PHY from a start point to a destination because SEP is PHY-agnostic.
CSE_c (CSE for Control Data)

CSE_c provides the ESS CCI protocol.

ESS CCI (Enhanced Safety and Security Camera Control Interface)
- CCI Read and Write Messages are extended with ESS CCI Tags (e.g., Message Counter(MC) and CRC-16).
 - Separate Tags for Read and Write messages. Tags are used for verification of the CCI messages.
 - The ESS CCI Controller and Target Devices shall always support both ESS CCI Mode1 and Mode2.

ESS CCI Mode 1
- ESS CCI Tags are transmitted along with the CCI Messages
- Each message can be verified and processed as soon as it is received by the Target or by the Controller

ESS CCI Mode 2
- ESS CCI Tags are accumulated over multiple messages (e.g. per Frame)
- The accumulated Tags are sent as CSI-2 Embedded Data from the Target to the Controller
- The Controller verifies the ESS CCI Tags
- No bandwidth overhead on I2C

Figure 15 Overview of Write Mechanisms Using ESS CCI
ESS CCI Mode1

The ESS CCI Tag shall be added after CCI (I2C) Read/Write Messages as a footer in Mode1.
MASS for Automotive Displays

James Goel
Vice Chair, MIPI Display Working Group
MASS Functional Safety Application

Digital Side Mirror Replacement
MIPI Automotive SerDes Solutions (MASS)

Vision for Full SerDes Integration

Sensor and display endpoints with integrated long-reach connectivity (integrated A-PHY SerDes) connect to the ECU without intermediate bridges. Application-level functional safety and security data protection. HDCP for protecting premium content.
Incorporating Solutions for Data Protection

Bridge-to-Bridge Data Protection

End-to-End Data Protection (Integrated SerDes)
MASS New ECU with Fully Integrated A-PHY

ECU DSI-2 Display Source with integrated A-PHY

- DSI-2 Display Source (Pixels)
 - Display Pixel Data Path
 - Display Command and Control

- Pixel to Byte Packing
- Display Command Services Command Bytes

- DSI-2 Protocol Adaptation Layer with DSE 1.0

- A-PHY Data Link Layer

- A-PHY Physical Layer Transmitter

ECU VESA Display Source with integrated A-PHY

- VESA Display Source (Pixels)
 - Display Pixel Data Path
 - Display Command and Control

- VESA eDP/DP Protocol Adaptation Layer with DSE 1.0

- A-PHY Data Link Layer

- A-PHY Physical Layer Transmitter

DSI-2 Display Sink with Integrated A-PHY

- A-PHY Physical Layer Receiver

- Lane Management

- DSI-2 Protocol Adaptation Layer with DSE 1.0

- Display

VESA Display Sink with Integrated A-PHY

- VESA eDP/DP Protocol Adaptation Layer with DSE 1.0

- A-PHY Physical Layer Receiver

- Lane Management

- Display
Annex D – Communication bus safety mechanisms:

- One-bit hardware redundancy
- Multi-bit hardware redundancy
- Read back of sent message
- Complete hardware redundancy
- Inspection using test patterns
- Transmission redundancy
- Information redundancy
- Frame counter
- Timeout monitoring
- Combination of information redundancy, frame counter and timeout monitoring
Adding Service Extensions Packets (SEPs)

Original Frame in Application Processor Memory

Original Frame
Active Pixels

SEP-Formatted Frame in Application Processor Memory

SEP Header
 SEP Formatted Frame
 Active Pixels
 SEP Footer

Figure 23 SEP Formatting in the Display Source

MIPI DSE℠ v1.0, MIPI PAL℠/DSI-2℠ v1.0
C.1 Converting DSI-2 Long and Short Packets to SEP

Figure 20 illustrates conversion from a DSI-2 Long Packet to SEP carried within DSI-2 Long Packet.

Figure 20 Converting DSI-2 Long Packet to SEP Within DSI-2 Long Packet

Figure 21 illustrates conversion from a DSI-2 Short Packet to SEP carried within DSI-2 Long Packet.

Figure 21 Converting DSI-2 Short Packet to SEP Within DSI-2 Long Packet

MIPI DSE℠ v1.0, MIPI PAL℠/DSI-2℠ v1.0
MASS Display Services Extension (DSE 1.0)
Services Extensions Protocol (SEP) Header and Footer

- **eDT** – extended Data Type
 - CSI, DSI
 - VESA eDP/DP
- **Message Counter**
- **CRC-32**
 - Hamming distance of 3 or more

| Bits | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|
| ePH[0] | R | eVC | | eDT | R | ePFEN | Reserved | ePHEN |
| ePH[1] | | | | | | | SEP Payload Length | |
| ePH[2] | | | | | | | Service Descriptor | Message Counter |
| ePH[3] | | | | | | | Reserved | |
| ePH[4] | | | | | | | Reserved | |
| ePH[5] | | | | | | | HDCP streamCtr[31..0] | |
| ePH[6] | | | | | | | HDCP InputCtr[31..0] | |
| ePH[7] | | | | | | | HDCP InputCtr[64..32] | |

| Bits | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|
| ePF[0] | | | | | | | Reserved | |
| ePF[1] | | | | | | | CRC-32 | |

MIPI DSE℠ v1.0
Detailed Display Protocol Stack

- ECU Display Source
 - ECU Pixel Frame Buffer
 - Generate SEP Packet Payload (Optional HDCP)
 - Generate SEP Header and Footer
 - Generate DSI-2 Long/Short Packet
 - Lane Management
 - C/D-PHY Tx

- Display Sink
 - DSI-2 Display Controller
 - Unpack SEP Packet Payload (Optional HDCP)
 - Unpack SEP from DSI-2 Payload
 - Parse DSI-2 Long/Short Packet
 - Lane Management
 - C/D-PHY Rx

- A-PHY Bridge
 - C/D-PHY Rx
 - Lane Management
 - DSIA-SRC

- A-PHY Source
 - APPI

- A-PHY Sink
 - APPI

- Asymmetric Bi-Direction
 - High Speed Data
Summary

• MASS provides a standardized framework enabling end-to-end FuSa and Security
 – Addresses both the data and control planes including side-band control
 – Flexible framework to allow tailoring the FuSA and security services for a wide range of use cases and OEM preferences

• MASS reuses widely adopted MIPI and VESA protocols to address automotive requirements

• MIPI has completed the first suite of MASS specifications
 – A-PHY v1.0 / v1.1, Protocol Adaptation Layers for CSI-2, DSI-2, VESA eDP/DP, I2C, GPIO, Ethernet
 – MIPI DSE and MIPI CSE providing service extensions for FuSa

• MASS Security Specification is expected in 2022
Information on A-PHY can be found at:

- MIPI A-PHY Specification Homepage
- MIPI White Paper: Introduction to MASS
MIPI Automotive Workshop

An in-depth look at the MIPI Automotive SerDes Solutions (MASS) framework

Q&A