5.3 MIPI—In Wearables

In AR Glasses:
- DSI-2 over C/D-PHY to drive an advanced, high-resolution heads-up display, enabling low-power ‘Smart Region of Interest’ mode when watch is in standby mode
- CSI-2 over C/D-PHY to connect a high-resolution camera, enabling low-power vision inferencing
- SoundWire to provide a shared, two-wire interface, to drive speakers and microphones, enabling noise cancellation, low-power ‘keyword’ activation, and low-EMI operation to achieve tighter packaging of components with minimal EMC shielding
- RFFE within radio communications module

In Smartwatches:
- DSI-2 over C/D-PHY to drive an advanced high-resolution display, enabling low-power ‘Smart Region of Interest’ mode when watch is in standby mode
- MIPI Touch to enable touchscreen user interface
- C-PHY physical interface, reducing line and pin counts and generating low EMI, allowing smaller devices requiring less EMC shielding
- I2C to provide a shared, two-wire interface, to connect heart-rate, motion and other sensors and simple UI components such as LEDs and haptics
- SoundWire to drive advanced audio components such as microphones and headsets
- RFFE within radio communications module

In Smart Earbuds:
- I2C to provide a shared, two-wire interface, to connect sensors and simple UI components such as LEDs and buttons
- SoundWire providing a shared, two-wire interface, to drive high-quality speakers and microphones, enabling noise cancellation, low-power ‘keyword’ activation, and low-EMI operation to achieve tighter packaging of components with minimal EMC shielding

In Smart Sneakers:
- I2C to provide a shared, two-wire interface to connect:
 - Simple UI components such as small dot-matrix displays, LEDs and switches
 - Motion and pressure sensors
 - Motor actuators

Example Smart Watch Schematic

Associated MIPI SOFTWARE and DEBUG specifications also available to accelerate design process

USE CASES

Functionally safe and secure IoT device that will benefit from MIPI’s focus on safety and security

IoT device with constrained power supply that will benefit from use of MIPI low-power interfaces

IoT device with wide-area cellular connectivity that will benefit from MIPI’s 5G preparedness

Size-constrained, tightly packaged IoT device, benefiting from MIPI’s low pin count, low wire count, low EMI interfaces

IoT white paper: Enabling the IoT Opportunity