Ultra-Low Power Optical Links in Portable Consumer Devices

Holger Hoeltke
Silicon Line GmbH
Legal Disclaimer

The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled by any of the authors or developers of this material or MIPI. The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL.

All materials contained herein are protected by copyright laws, and may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of MIPI Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all related trademarks, tradenames, and other intellectual property are the exclusive property of MIPI Alliance and cannot be used without its express prior written permission.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
Evolution of User Interface

• User interfaces of mobile and consumer electronic devices evolved from a couple of LEDs and mechanical switches to interactive touchscreen interfaces

• Increasing computing power yielded ability to process and display highest-resolution, deep-color video content at frames rates suitable for 3D-viewing
Trends in Display Pixel Densities

20/20 Vision

\[\alpha = 1 \text{ arc minute} \]

Visual acuity is the spatial resolving capacity of the human eye as a function of the viewing distance.

Wikipedia (Visual Acuity):
“…20/20 standard can best be thought of as the lower limit of normal (vision)…”
“…the average visual acuity of healthy eyes is 20/16 to 20/12…”
Resolutions of ‘Visual Acuity’ Displays

- Based on 20/10 Vision:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Phone</td>
<td>11</td>
<td>625</td>
<td>4</td>
<td>3 : 2</td>
<td>2.081</td>
<td>1.388</td>
<td>2.888.428</td>
</tr>
<tr>
<td>Tablet</td>
<td>13</td>
<td>528</td>
<td>10</td>
<td>16 : 10</td>
<td>4.477</td>
<td>2.798</td>
<td>12.529.618</td>
</tr>
<tr>
<td>Laptop</td>
<td>20</td>
<td>343</td>
<td>15</td>
<td>16 : 10</td>
<td>4.363</td>
<td>2.727</td>
<td>11.897.090</td>
</tr>
</tbody>
</table>
Aggregated Gross Data Rates

<table>
<thead>
<tr>
<th>Visal Acuity Class: 20/10</th>
<th>Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D, 4" Smart Phone Display</td>
<td>12.5</td>
</tr>
<tr>
<td>3D, 10" Tablet Display</td>
<td>54.1</td>
</tr>
<tr>
<td>3D, 15" Laptop Display</td>
<td>51.3</td>
</tr>
</tbody>
</table>

(Gross Data Rate at 24-bit, 120 Hz, 20% Blanking OH, 8B/10B)
Actual Display Pixel Densities

2010

326 ppi

3.5“: 960 * 640 pixels
approx.: 1.5 Gbps (24b, 60Hz, incl. OH)

2011

498 ppi

6.1“: 2560*1600 pixels
approx.: 9 Gbps (24b, 60Hz, incl. OH)

scaled up to 3D tablet screen size of 10“: 4224*2640 pixels
approx.: 45 Gbps (24b, 120Hz, incl. OH)
How to Get Data Across

• Number of physical lines at respective aggregated data rate*:

<table>
<thead>
<tr>
<th>Visal Acuity Class: 20/10</th>
<th>Gbps</th>
<th>D-PHY 1000 Mbps</th>
<th>M-PHY Gear 2</th>
<th>M-PHY Gear 3</th>
<th>M-PHY Gear 4</th>
<th>eDP 2.7G</th>
<th>eDP 5.4G</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D, 4" Smart Phone Display</td>
<td>12</td>
<td>26</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>3D, 10" Tablet Display</td>
<td>54</td>
<td>110</td>
<td>36</td>
<td>18</td>
<td>10</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>3D, 15" Laptop Display</td>
<td>51</td>
<td>104</td>
<td>34</td>
<td>17</td>
<td>10</td>
<td>38</td>
<td>20</td>
</tr>
</tbody>
</table>

(8B/10B excluded)

* number of needed physical connections – number of differential lanes is half of that
Projected Channel Loss for Electrical Links

- ~ 50 dB loss at 10 GHz in a standard FR4 material
- To improve bandwidth lower loss material needed, more complex driver and equalization technologies needed ➔ Increased cost
- Beyond 10 GHz ➔ effect of reflections and crosstalk

Simulated data of frequency-dependent loss for a 20-inch long electrical interconnect link

Source: "20050423_wsh.pdf", E. Mohammed et al., Intel Corp.
Increasing Link Distances

- **Smartphone**
 - Video interconnect distances: 1”~ 3”

- **Tablet**
 - Video interconnect distances: 2”~ 10”

- **Ultrabook**
 - Video interconnect distances: 2”~ 20”
EMI Consequences

- EMI Measurements taken from FPC and Micro-Coaxial Cable at 1.5 Gbps
Constrained PCB Layout with Electrical Links

- MCX cable length must be kept as short as possible to limit EMI
- This constrains the placement of the electrical connectors
- This in turn constrains the placement of the ICs
A Valid Alternative

• Ultra-Low Power Optical Links
The Power Benefit

- Ultra-Low Power Optical Links

![Diagram of optical link components]

Key Data for Laser Driver and TIA/LA

- Data rate support up to 12.5 Gb/s
- Ultra low power consumption
 - e.g. <1 mW @3Gbps (Driver)
 - <5 mW @3Gbps (TIA/LA)
- Sub-LVDS Electrical I/O (SLVS-200)

*Actual active optical cable based on Silicon Line ICs:
- Optical TX-size (L x W x H): 3mm x 1.8mm x 1mm
- Optical RX-size (L x W x H): 3mm x 1.8mm x 1mm

Source: Amphenol
Signal Integrity Benefit

- 50 cm optical fiber link @ 3 Gb/s

TX: Single supply (2.5 V)
RX: Dual supply (1.2 & 2.5 V)

Total power: 11.7 mW
The Mechanical Benefits

Cross-sectional core image
- Cladding Layer
- Core
- 10 μm
- Cladding Layer

Low propagation loss
- 0.07 dB/cm (@850nm) for POW
- 0.004 dB/cm (@ 850 nm) for POF

Flexible durability
- Bending radius
 - R=1mm passed 1 million bending test
- Change of loss
 - Cycle (×10^4)

Twistable durability
- Twisting length
 - L=5mm passed 1 million twisting test
- Change of loss
 - Cycle (×10^4)

The EMI Benefit

- EMI-Measurements taken from FPC with included planar optical waveguide and an optical fiber link
The Link Number Benefit

- Number of optical links at respective aggregated data rate:

<table>
<thead>
<tr>
<th>Visal Acuity Class: 20/10</th>
<th>Gbps</th>
<th>D-PHY 1000 Mbps</th>
<th>D-PHY 1500 Mbps</th>
<th>M-PHY Gear 2</th>
<th>M-PHY Gear 3</th>
<th>M-PHY Gear 4</th>
<th>eDP 2.7G</th>
<th>eDP 5.4G</th>
<th>Optical Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D, 4" Smart Phone Display</td>
<td>12</td>
<td>26</td>
<td>18</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>3D, 10" Tablet Display</td>
<td>54</td>
<td>110</td>
<td>74</td>
<td>36</td>
<td>18</td>
<td>10</td>
<td>40</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>3D, 15" Laptop Display</td>
<td>51</td>
<td>104</td>
<td>70</td>
<td>34</td>
<td>17</td>
<td>10</td>
<td>38</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

(8B/10B excluded)
Flexible PCB Layout with Optical Links

- Cable length is not constrained, no EMI issues
- Optical connectors can be placed anywhere on the boards
- ICs can be placed anywhere on the boards
- Enables customer to conceive new mechanical form factors and design

MAIN BOARD

APPLICATIONS PROCESSOR Or GPU

Optical Link

LCD DISPLAY MODULE

TCON

Row Drivers

Column Drivers

TFT Panel
Bridging to Optics

• Optical friendly signalling (e.g. DC-balanced 8B/10B encoding)
 • MIPI M-PHY
 • DisplayPort, embedded DisplayPort
 • SATA, USB 3
 • Next generation peripheral link (e.g. Thunderbolt, USB “4.0“) …

All above standards are defined electrically, but have optical-friendly signalling or explicit support for optics.

• Serialization of parallel interfaces
 • MIPI D-PHY
 • DisplayPort, embedded DisplayPort
 • RGB, LVDS

Ultra-low power serialization technologies for D-PHY, eDP, etc. are readily available as bridge ICs or IP enabling a smooth transition to optical link technology.
Serializing D-PHY Signals

SerDes Products for MIPI D-PHY Cameras and Displays

- Ultra-low power, high performance serial D-PHY bridge IC
- Bandwidth scalable up to 6 Gbps which supports:
 - The latest generation of high resolution cameras and 3D displays
- No EMI issues ➔ No RF reception problems
- Small size and footprint enables ultra-small and thin form factor designs
- Optional galvanic link feature supports bi-directional low power data transmission (LPDT)
Optical High-Speed Video Interconnects

- Optical links enable system designers to conceive new mechanical form factors and designs
- High-speed optical link bridge easily several meters without signal loss
- No EMI (aggressor or victim)
- Bandwidth scalable, future, proof to 100 Gbps and beyond
- Small in size and footprint
- Ultra-low power, little impact on battery life
- All video transport protocols are supported for smart phones, tablets and notebooks
Thank you!

• For more in information please visit us at:

www.silicon-line.com

or send an e-mail to:

holger.hoeltke@silicon-line.com